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Lecture Objectives:

I Introduction to Dynamic Factor Models (DFM).

I Principal Components

I Factor Augmented VAR (FAVAR)

I Identification of FAVARs

I FAVARs impulse response functions
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Secondary Readings:

I “Dynamic Factor Models”, Stock and Watson.

I “Measuring the Effects of Monetary Policy: A
Factor-Augmented Vector Autoregressive (FAVAR) Approach”,
Bernanke, Boivin and Eliasz.
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https://www.princeton.edu/~mwatson/papers/dfm_oup_4.pdf
https://www.federalreserve.gov/PUBS/feds/2004/200403/200403pap.pdf
https://www.federalreserve.gov/PUBS/feds/2004/200403/200403pap.pdf


Intro to DFMs

I As we saw before, VARs provide a flexible yet heavily
parameterized characterizations of the interactions of observable
time series.

I In many cases, the observables behavior is the result of a small
set of unobservable underlying process.

I Example: Real business cycle (RBC) whereby total factor
productivity is the driving force behind investment, consumption
and output.
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Intro to DFMs

I DFMs were developed by Geweke (1977) and can also be
represented by a state space representation.

I Hence, the Kalman Filter can be applied. However, since the
coefficients are of interest and unknown, we need to estimate
them by maximizing likelihood.

I This process with many variables can be cumbersome. Hence,
we will show how the literature has evolved over time to estimate
DFMs.
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Intro to DFMs

I First Generation: time-domain maximum likelihood via the
Kalman filter

I Second Generation: nonparametric averaging methods (principal
components)

I Third Generation: hybrid principal components and state space
methods
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DFMs Motivation

I Macroeconometricians face data sets that have large number of
series, but the number of observations on each series is relatively
short, for example 20 to 40 years of quarterly data.

I Sargent and Sims (1977) showed that two dynamic factors could
explain a large fraction of the variance of important U.S.
quarterly macroeconomic variables, including output,
employment, and prices.
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DFMs Motivation

I The premise of a dynamic factor model is that a few latent
dynamic factors, ft, drive the comovements of a
high-dimensional vector of time-series variables, Xt, which is
also affected by a vector of mean-zero idiosyncratic
disturbances, et.

I These idiosyncratic disturbances arise from measurement error
and from special features that are specific to an individual series
(the effect of a Salmonella scare on restaurant employment, for
example).

I Finally, the latent factors follow a time series process, which is
commonly taken to be a vector autoregression (VAR).
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Intro to DFMs

Xt = λ(L)ft + et (1)

ft = Ψ(L)ft−1 + ηt (2)

where there are N series, so that Xt and et are both N × 1, there are q
factors so that ft and ηt are both q× 1, L is the lag operator, and the lag
polynomial matrices λ(L) and Ψ(L) are N × q and q × q, respectively.

I The ith lag polynomial λi(L) is called the dynamic factor loading
for the ith series, Xit.

I And λi(L)ft is called the common component of the ith series.
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Intro to DFMs

I We assume that all the processes in (1) and (2) are stationary.
(Important!)

I The idiosyncratic disturbances are assumed to be uncorrelated
with the factor innovations at all leads and lags, E[etη

′
t−k] = 0 for

all k.

I By using DFMs, the forecaster gets the benefit of using all N
variables by using only q factors, where q is typically much
smaller than N.

10 / 34



Factors Estimation - Principal Components

I The first way to estimate the factors and factor loadings is to use
Kalman Filter. We already saw this last lecture. However, if there
are a large number of factors, this can be difficult to implement.

I Another way, is to estimate the factors first, and then treat them
as data running a VAR on (2).

I One very useful method to estimate factors and their factor
loadings is principal components

11 / 34



Factors Estimation - Principal Components

I Lets write (1) as a static model first:

Xt = ΛFt + et

Where Ft could potentially include lagged factors and Λ is a
matrix with all the factor loadings.

I Principal components offers a way to estimate both F̂t and Λ̂.
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Factors Estimation - Principal Components

I There are many ways in which one can arrive at the principal
components estimates.

I Here, we will show how to drive them as a solution to the
following least squares problem:

min
F1,...,FT ,Λ

1
NT

T∑
t=1

(Xt − ΛFt)
′(Xt − ΛFt)

subject to N−1Λ′Λ = I

I This is equivalent to maximize:

max
Λ

Λ′Σ̂XXΛ (3)

subject to N−1Λ′Λ = I
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Factors Estimation - Principal Components

I The solution is set the factor loadings matrix equal to the scaled
eigenvectors of Σ̂XX corresponding to its q largest eigenvalues.

I The principal components F̂t are going to be given by:

F̂t = N−1Λ̂′Xt
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Factors Estimation - Principal Components
Suppose we have three variables and we compute two principal
components:
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Factors Estimation - Principal Components

I Suppose Xt has 3 variables: investment, output and consumption.

I And that we are interested in reducing the dimensionality by
estimating one factor.

I This can be motivated by the RBC model whereby TFP is the
underlying process behind those three variables.

I This is a good example of dimensionality reduction achieved
though Principal Components Analysis.
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Factors Estimation - Principal Components

I Let investment be it, output yt and consumption ct we have:it
yt

ct

 =

Λ11
Λ21
Λ31

F1t +

e1t

e2t

e3t


I Before estimating the system with only one factor, we can make

some analysis with more factors to see whether the data can
indeed be mostly explain by only one factor.
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Factors Estimation - Principal Components
I The business cycle on the data is given by:
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Factors Estimation - Principal Components

I Lets estimate the model with 3 factors and see how much of the
variance is explained by each different factor:
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Factors Estimation - Principal Components

I Indeed most of the variation in the data can be explained by the
first component
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Factors Estimation - Principal Components

I Here is the estimated Λ̂:

I And the first five observations of F̂1:
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Factors Estimation - Principal Components
I All the predicted series using the estimated factor and loadings:

Principal Components Prediciton
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Back to DFMs

I The second generation of DFMs, uses principal components to
estimate the Factors and then treats them as data and estimates
the equation (2):

F̂t = ΨF̂t−1 + ηt

I Which is just a VAR(1) with the estimated factors from PCA.

I The third generation of DFMs, runs in the same way but adds an
extra step of re-estimating the Factors using the Kalman
Smoother.
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FAVAR

I The FAVAR, proposed by Bernanke, Boivin and Eliasz, applies
the DFMs idea in order to improve the identification of shocks in
traditional structural VARs.

I The structural VARs had some limitations:

1. Incorrect identification of shocks: small amount of information
used by low-dimensional VARs

2. Impulse responses can be observed only for the included variables
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FAVAR

I Famous example of identification issues with monetary policy
shocks: Price Puzzle

I This puzzle refers to the conventional finding in the VAR
literature that a contractionary monetary policy shock is followed
by an increase in the price level, rather than a decrease as
standard economic theory would predict.
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FAVAR

I A common explanation for the price puzzle was for the lack of
information in the VAR system that might be in the information
set of the central bank.

I As BBE pointed out “If the Fed systematically tightens policy in
anticipation of future inflation, and if these signals of future
inflation are not adequately captured by the data series in the
VAR, then what appears to the VAR to be a policy shock may in
fact be a response of the central bank to new information about
inflation.”
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FAVAR

I The question then is: Is it possible to include a rich information
set in a VAR without giving up too many degrees of freedom?

I BBE showed that the answer is positive. It can be done with a
combination of VAR with factor analysis.

I With the developments of Stock and Watson (2002) DFMs that
showed that a large number of macroeconomic series could be
well explained by a small number of factors, BBE proposed to
include such factors in a VAR, thus calling it factor augmented
VAR (FAVAR).
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FAVAR

I Let Yt be an M × 1 vector of observable variables that have
strong effects on the rest of the economy.

I Let Ft be an K × 1 vector of unobserved factors. We can think of
business activity as an example of an unobserved factor.

I The FAVAR model is given by:[
Ft

Yt

]
= Φ(L)

[
Ft−1
Yt−1

]
+ vt
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FAVAR

I But Ft are not observable. However, we assume that there are N
variables Xt that are correlated with both Yt and Ft:

Xt = Λf Ft + ΛyYt + et

where Λf is an N × K matrix and Λy is N × M. They are once
again the loading factors.

I There are two ways of estimating the FAVAR. The first one is a
two-step principal component. The second one is Bayesian
estimation. It turns out that in this case, the Bayesian estimation
added complexity does not yield different results. So we will
discuss here the 2 step procedure only.
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FAVAR

I The first step is to do a PCA in order to estimate the factors. In
this step we do not make use of the fact that we observe Yt. In the
end, the principal components still recover consistently the space
covered by Yt and Ft as along as we include enough factors.

I Then, we estimate F̂t as to be the factors that span Xt that is not
spanned by Yt

I Then the second step is to estimate the VAR using F̂t,Yt.
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FAVAR - Application to Monetary Policy

I Assume Yt is the Federal Funds Rate.

I Then, in order to identify the monetary policy shock, we assume,
like in the structural VAR literature, contemporaneous
restrictions.

I In particular, we assume that the federal funds rate affects
contemporaneously what we will call “fast moving” variables
such as stock prices for instance and that will affect with a lag
“slow moving” variables such as output.
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FAVAR - Application to Monetary Policy
I After, we estimate the principal components, we need to clean

them from the effect of interest rate. However, given the
identification assumption, that slow variables are not affected by
interest rates contemporaneously, we need to take into account
that part of the principal components are not affected by interest
rates.

I Hence, we clean them in the following way:

1. We estimate the factors associated with the slow moving variables
F̂s

2. We estimate the correlations of the components with the interest
rate:

Ĉt = b1F̂s + b2Yt + et

3. Finally, we clean the factors:

F̂t = Ĉt − b2Yt
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FAVAR - Application to Monetary Policy

I Finally we can estimate the VAR with the estimated factors using
the recursive identification whereby interest rate is ordered last
as now it does not affect any factor contemporaneously (we have
cleaned the effect on fast moving variables in the last step).

I The impulse responses of Xt can be recovered by the responses
of the factors and interest rates to a shock in interest rate using
the mapping between factors and observables:

∂Xt

∂εYt

= Λf ∂F̂t

∂εYt

+ Λy ∂Yt

∂εYt
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FAVAR - Application to Monetary Policy
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