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Lecture Objectives:

I Introduction to state space models.

I ARMA and VAR casted as a state space model.

I Introduction to the Kalman Filter

I Smoothing vs Filtering

I Kalman Filter applications
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Secondary Readings:

I Chapter 6, Canova

I Chapter 13, Time Series Analysis, Hamilton, James, first edition
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Intro to State Space Models

I The state space models formulation is quite general.

I It encompasses all the models we have seen so far.

I However, the analysis involved are more complex and it is
simpler to use the models we have seen in their previous
formulations.

I However, the state space models become quite useful for
different specifications. Particularly, when we are dealing with
unobservable variables (state variables) and with measurement
error.
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Linear State Space Models

I Let the values of the state (unobserved) at time t be given by
vector θt and yt be a vector of observed variables at time t. The
linear state space model can be represented by:

yt = F′tθt + νt (Measurement Equation) (1)

θt = Gtθt−1 + wt (Transition Equation) (2)

where θ0 ∼ N(m0,C0), νt ∼ N(0,Vt) and wt ∼ N(0,Wt).
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Examples

I Any ARMA model can be formulated as a state space model.
Example 1: ARMA(2,1) yt = a1yt−1 + a2yt−1 + εt + b1εt−1 can
be written as:

(Measurement Equation)

y_t =
[
1 0

] [ yt

a2yt−2 + b1εt−1

]

(Transition Equation)[
yt

a2yt−1 + b1εt

]
=
[

a1 1
a2 0

] [
yt−1

a2yt−2 + b1εt−1

]
+
[

1
b1

]
εt

Check!
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Examples

I Any VAR model can be trivially formulated as a state space
model. Example 2: VAR(1) yt = A1yt−1 + εt can be written as:

(Measurement Equation)

y_t = y_t

(Transition Equation)

y_t = A_1 y_t-1 + εt
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Examples

I Any latent variable specification can also be formulated as a state
space model. Example 3:

(Measurement Equation)

y_t = A_t y_t-1 + ν1t

(Transition Equation)

A_t = A_t-1 + ν2t
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Filtering

I The State space models includes latent states (unobservable).
Hence, we need to estimate the latent states in order to make
predictions of the observables yt.

I One way to estimate the latent states is called filtering.

I The idea behind filtering is to use all the information up to data t
to make predictions of the state vector.

Let Dt be all the data up to date t including the observation yt.
Then, Bayes updating gives us that:

p(θt|Dt−1, yt) =
p(yt|θt)p(θt|Dt−1)

p(yt)

Given the results of last lecture and the normality assumptions
on the state space model we know that θt|Dt ∼ N(mt,Ct)
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Kalman Filter

I The Kalman Filter is used to compute optimal forecasts of yt as
well as recursive estimates of the state variables θt with time t
information for state space models.

I Its possesses many useful applications:

1. Economics:
I Time Varying Parameters
I Markov Switching Models
I Unobserved Components
I Likelihood Maximization

2. Elsewhere:
I Navigation
I Signal Extraction
I Robotics
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Kalman Filter Algorithm

I The prior, likelihood and posterior distributions are given by:
θt|Dt−1 ∼ N(at,Rt) yt|θt ∼ N(F′tθt) θt|Dt ∼ N(mt,Ct)

I Assuming, Ft, Gt, Vt and Wt are known, the recursive algorithm
of the Kalman filter, with θ0 ∼ N(m0,C0), is now presented:

I Step 1: Update Prior

at = E(θt|Dt−1) = Gtmt−1 (3)

Rt = var(θt|Dt−1) = GtCt−1G′t + Wt (4)
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Kalman Filter Algorithm

I Step 2: Forecast yt and mean square of the forecast error (with
t − 1 info)

ft = E(yt|Dt−1) = F′tat (5)

Qt = var(yt|Dt−1) = F′tRtFt + Vt (6)

I Step 3: Calculate the prediction error and the Kalman gain

et = yt − ft (7)

Kt = RtFtQ−1
t (8)
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Kalman Filter Algorithm

I Step 4: Update state estimate: (with t information)

mt = at + Ktet (9)

Ct = Rt − KtQtK′t (10)

I Step 5: Repeat previous steps until t = T

I The posterior mean of the state is a weighted sum of the prior
mean and the forecast error.

I Also, notice that the variance of the posterior distribution, Ct, is
less than the variance of the prior distribution Rt.
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Smoothing
I Another way to estimate the state vector is to use the entire

sample information instead of just up to time t.

I The strategy is then to start in the lat period observation and
update the state θt backwards.

p(θt−1|Dt) =

∫
p(θt−1|θt,Dt)p(θt|Dt)dθt

θt−1|Dt ∼ N(at(−1),Rt(−1))

where

at(−1) = mt−1 + Bt−1(mt − at)

Rt(−1) = Ct−1 − Bt−1(Rt − Ct)B′t−1

Bt−1 = Ct−1G′tR
−1
t
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Smoothing vs Filtering

I Smoothing is particularly useful when we are interested in the
value of the unobserved variables for a specific sample period.

I It is not useful to make predictions of observables.

I Important: Cannot be used to estimate likelihood and model
parameters. For that, we need to use filtering.
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Prediction

I Theorem: If initial conditions (priors) and innovations are
normal, Kalman filter is the best predictor (linear and nonlinear)
of yt. Else, it gives the best linear predictor.

I With the estimated state at date t using the Kalman Filter we can
make predictions of future values of observables.

I The one-step ahead forecast is given by:

E[yt+1|Dt] = E[F′t+1θt+1 + νt+1|Dt] = F′t+1at+1 = ft+1

var[yt+1|Dt] = var[F′t+1θt+1 + νt+1|Dt] =

F’_t+1var[θt+1|Dt]Ft+1 + Vt+1 = F′t+1Rt+1Ft+1 + Vt+1 = Qt+1
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Maximum Likelihood Estimation

I Let yt be an m× 1 and let φ represent a vector of coefficients to
be estimated. The likelihood L(y1, ..., yt, φ) can be written as a
decomposition of the prediction error:

(11)

L(y1, ..., yt, φ) = −Tm
2

ln 2π − 1
2

t∑
t=1

ln |Σt|t−1|

− 1
2

T∑
t=1

(yt−yt|t−1)Σ−1
t|t−1(yt−yt|t−1)

where et = yt − yt|t−1 ∼ N(0,Σt|t−1) and y1 ∼ N(ȳ1,Σ1);
e1 = y1 − ȳ1

I Given φ the Kalman filter can be used to compute et,Σt|t−1 for
all t. Then we can estimate φ by maximizing (11). Do this until
convergence. This process is called the EM algorithm.
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Applications

I Random Walk plus noise model

I As an example, consider the monthly inflation of CPI.
I In practice, we do not observe true inflation. Moreover, even the

inflation CPI data has some measurement error.
I We can model inflation using the following state space model:

CPIt = πt + νt

πt = πt−1 + wt
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Applications
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Applications

I Now consider the Nile flow at Aswan data from 1871 to 1970.
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Applications

I We could try to model the moving average flow of the river using
a state space model with time varying coefficients to capture the
structural change that seemed to happen around 1900.

I In order to do that, we will introduce a time dummy variable xt

that will take value 0 just before 1900 and 1 thereafter.

yt = µt + λtxt + νt

µt = µt−1 + w1t

λt = λt−1 + w2t

I In this example, Ft varies over time and our state vector is
θt = (µt, λt)

T
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Applications
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Applications
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Questions to think about

I Although state space models are fairly general as presented in
this lecture, what extensions could make them even more
general?

I What is a latent variable? How can we optimally estimate a
latent variable?

I What is the basic idea behind the Kalman Filter?

I Why can’t we use smoothing to estimate likelihood?
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