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Lecture Objectives:

I Introduce stochastic difference equations and the concept of
stationarity.

I Describe the AR models and their properties.

I Show the stationarity conditions for AR models and how they are
linked with the stability conditions of a SDE.

I Define the autocorrelation function (ACF) and the partial
autocorrelation function (PACF).

I Show how they can help us identify an AR model, select its lag
and check the residuals of an estimated AR model.

I Introduce the information criteria AIC and SBC.

I Introduce the Box-Jenkins methodology.
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Secondary Readings:

I Chapter 2, Applied Econometric Time Series, Enders, Walter,
Fourth Edition

I Chapter 3, Time Series Analysis, Hamilton, James, first edition
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Stochastic Difference Equations

I Suppose we have again our benchmark examples:

yt = a1yt−1 + εt (1)

I If we now assume that εt ∼ N(0, σ2)

I Then (1) becomes a stochastic difference equation.

I In this course we will generally model the stochastic component
as white noise.
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White Noise - Definition

I A white noise process is a sequence {εt}∞t=−∞ such that:

1. E(εt) = 0

2. E(ε2
t ) = σ2

3. E(εtεh) = 0 for t 6= h

I Moreover, if we add the assumption that εt is normally
distributed:

4. εt ∼ N(0, σ2)

I Then we have a Gaussian white noise.
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Stochastic Processes

I Suppose we have observed a sample of size T of the random
variable (1) with a1 = 0.5.

{y1, y2, ..., yT} (2)

I This sample is clearly dependent on the specific draws of the T
independent and identically distributed εt:

{ε1, ε2, ..., εT} (3)

I Hence, the observed sequence is only one realization of the
stochastic difference equation.
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Many Realizations of the same Stochastic Process
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Figure: 5 realizations of yt = 0.5yt−1 + εt
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Stochastic Process

I Now suppose we take a battery of I sequences such that at each
date t we would have I observations coming from the same
distribution:

{y(1)t , y(2)t , ..., y(I)t }

I This random variable, call it Yt, for a Gaussian white process has
the following density:

fYt(yt) =
1√
2πσ

exp
[
−y2

t

2σ2

]
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Stochastic Process - Unconditional Mean

I If the unconditional mean exists, at time t, it would be given by:

E(Yt) =

∫ ∞
−∞

ytfYt(yt)dyt (4)

I Example: For a Gaussian white noise process:

Yt = µ+ εt (5)

E(Yt) = µ (6)

Why?
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Stochastic Process - Autocovariance

I The realizations can have time dependence

I We can use the joint distribution to understand this dependence
through the autocovariance.

I The autocovariance can be calculated from the joint distribution
of (Yt,Yt−1, ...)

γjt = E(Yt − µt)E(Yt−j − µt−j) (7)

I For Example (5) the autocovariance is:

γ0t = E(Yt − µt)
2 = σ2

γjt = 0 j 6= 0
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Stationarity

I Time series objective is to model the time dependence of
observations.

I Observations can only be independent in one way but they can be
dependent in many ways.

I One important way to model time dependence is with stationary
models (Later in the course we will discuss non-stationary
models).

I The foundation of statistical inference in time series and forecast
is the concept of weak stationarity.

I ARMA are very useful stationary models for univariate time
series.
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Stochastic Process - Weakly Stationary

I Definition: A stochastic process Yt is weakly stationary if neither
the mean µt nor the autocovariances γjt depend on date t:

E(Yt) = µ ∀t (8)

E(Yt − µ)E(Yt−j − µ) = γj ∀t, j (9)

I A Gaussian process that is weakly stationary is also strictly
stationary.

I Verify (5) is weakly stationary.
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Examples - Is it stationary?
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Examples - Is it stationary?
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Examples - Is it stationary?
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Examples - Is it stationary?
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Figure: SP 500 U.S. Stock Index - First Difference
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Examples - Is it stationary?
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Figure: SP 500 U.S. Stock Index - First Difference of the Log
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Examples - Is it stationary?
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Stochastic Process - Weakly Stationary

I Unfortunately, we do not observe I realizations. We just get one.
Hence, we cannot be sure that the time average:

ȳ = (1/T)

T∑
t=1

y(1)t = (1/I)
I∑

i=1

y(i)t (10)

I It turns out that under very general conditions, a weakly
stationary process is ergodic for the mean.

I Which means (10) holds and we can use standard econometric
techniques using our sample of observations.
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Autoregressive Models - AR(1)

I An AR model of order 1, or simply AR(1) uses the first lagged
observation to predict the current observation:

yt = φ0 + φ1yt−1 + εt (11)

where εt is assumed to be a white noise process.

I The conditional expectation of yt is:

E(yt|yt−1) = φ0 + φ1yt−1 (12)
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AR Properties
I Is the AR(1) process stationary?

I What if |φ1| > 1? Example: φ1 = 1.1
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Figure: Realizations with φ1 = 1.1
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AR Properties

I Hence, there is a close connection between the stability of a
difference equation and stationarity of a stochastic process.

I Clearly, a stochastic difference equation cannot be stationary if
|φ1| > 1.

I Moreover, it turns out that an AR(1) process is weakly stationary
if and only if |φ1| < 1.

I We will prove here just one direction, from weakly stationary to
|φ1| < 1. Please see notes and/or Hamilton for the other
direction of the proof.
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AR Properties

I Assuming the series is weakly stationary: E(yt) = µ,
Var(yt) = γ0 and Cov(yt, yt−j) = γj.

Taking expectation on (11) we have:

E(yt) = φ0 + φ1E(yt−1) + E(εt)⇒

E(yt) = φ0 + φ1E(yt−1)⇒

µ = φ0 + φ1µ⇒

µ =
φ0

1− φ1
(13)
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AR Properties

I Two interesting notes:

1. The unconditional mean of yt only exists if φ1 6= 1

2. The mean of yt, µ = 0 iff (if and only if) φ0 = 0

I Rearranging (13)⇒ φ0 = (1− φ1)µ, we can substitute it in (11)
to get:

yt − µ = φ1(yt−1 − µ) + εt (14)

I If we take the square and then the expectation of (14) we obtain
the variance:

E(yt−µ)2 = Var(yt) = φ2
1E(yt−1−µ)2+2E[φ1(yt−1−µ)εt]+E(εt)

2
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AR Properties

I Since E(εt) = 0 (why?) and Cov(yt−1, εt) = E[(yt−1 − µ)εt] = 0
(why?)

Var(yt) = φ2
1Var(yt−1) + σ2

I Because we assumed stationarity, we have that Var(yt) = Vart−1

Var(yt) =
σ2

1− φ2
1

(15)
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AR Properties

I Since variance of a random variable is nonnegative we have that
φ2

1 < 1⇒ |φ1| < 1.

I Now we move to show the autocovariance of the AR(1) process.
Multiplying (14) by (yt−j − µ):

γj = φ1γj−1 if j > 0 (16)

I and γ0 = Var(yt)
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Autocorrelation

I Definition: The autocorrelation is given by:

ρj =
Cov(yt, yt−j)√

Var(yt)Var(yt−j)
(17)

I Given stationarity, Cov(yt, yt−j) = γj and Var(yt) = Var(yt−j)⇒

ρ0 = 1 (18)

ρj = φ1ρj−1 if j > 0 (19)

I The autocorrelation function (ACF) of an AR(1) is given by
ρj = φj

1
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AR(2)

I The AR(2) process assumes the form

yt = φ0 + φ1yt−1 + φ2yt−2 + εt (20)

I Using the same technique as we used in AR(1):

E(yt) = µ =
φ0

1− φ1 − φ2
(21)
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AR(2) - Properties

I Provided φ1 + φ2 6= 1. We can use φ0 = (1− φ1 − φ2)µ we
obtain:

(yt − µ) = φ1(yt−1 − µ) + φ2(yt−2 − µ) + εt (22)

I Multiplying (22) by (yt−j − µ) we have:

(yt−j − µ)(yt − µ) = φ1(yt−j − µ)(yt−1 − µ)

+φ2(yt−j − µ)(yt−1 − µ) + (yt−j − µ)εt

I Taking Expectation

γj = φ1γj−1 + φ2γj−2 ∀j > 0 (23)

29 / 45



AR(2) - Properties
I Exercise: Find the variance of yt = γ0.

I (23) is a homogeneous difference equation. You can see the
solution in the last class lecture.

I Here we use the Lag operator to show an alternative way of
solving (23).

γj = φ1Lγj + φ2L2γj

(1− φ1L− φ2L2)γj = 0 (24)

I There is a correspondence between (24) and the following
polynomial (see Hamilton for details):

1− φ1z− φ2z2 = 0 (25)
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AR(2) - Properties

I There is also a direct correspondence with the characteristic
roots we saw in Lecture 1 and the roots of the (25) polynomial:

z1 = α−1
1 (26)

z2 = α−1
2 (27)

I Point: We can alternatively find the homogeneous solution by
calculating the roots of (25).

(z1, z2) =

φ1 −
√
φ2

1 + 4φ2)

−2φ2
,
φ1 +

√
φ2

1 + 4φ2)

−2φ2



31 / 45



AR(2) - Stationarity

I The stationarity condition is again closely connected with the
stability condition of the difference equation.

I The stationarity condition for an AR(2) process is that the roots
z1, z2 lie outside the unit circle.

I Alternatively, the stationarity condition for an AR(2) process is
that the roots α1, α2 lie inside the unit circle.
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AR(p)
I The results of AR(1) and AR(2) can readily be extended to the

general AR(p) model

yt = φ0 + φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt (28)

E(yt) =
φ0

1− φ1 − ...− φp
(29)

I The associated characteristic equation is

1− φ1z− φ2z2 − ...− φpzp = 0 (30)

I If all roots are greater than 1 in modulus, yt is stationary. Again,
inverses of the roots are the characteristic roots of the model.

I Hence, yt is stationary if the characteristic roots of the model are
less than 1 in modulus.
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Identifying AR(p) in practice - Box-Jenkins Methodology

I Stationarity

I Order Determination
1. Partial Autocorrelation Function (PACF)
2. Information Criteria

I Parameter Estimation

I Model Checking

I Forecast
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PACF

I Consider the following AR models in consecutive order:

yt = φ0,1 + φ1,1yt−1 + ε1t

yt = φ0,2 + φ1,2yt−1 + φ2,2yt−2 + ε2t

yt = φ0,3 + φ1,3yt−1 + φ2,3yt−2 + φ3,3yt−3 + ε3t

...

I Since, ε are white noise, we can use least squares regression to
estimate these models.

I The lag-1 sample PACF of yt is the estimate φ̂1,1. The lag-2
sample PACF is given by φ̂2,2 and so on.

I Hence, the lag-l PACF measures the added contribution of lag l
to the AR(l− 1) model.
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PACF
I Hence, we select the lag based on when the PACF turns to zero.

In other words, when we choose the lag based on the lag upon
which there is no more added contribution.

I Example: Portugal GDP first difference. We choose an AR(4)
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Figure: Portugal’s GDP first difference PACF
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Information Criteria

I There are several information criteria available to determine the
order p of an AR process.

I For a Gaussian process, the Akaike Information Criterion (AIC)
is the following:

AIC = ln (σ̂2
p) +

2p
T

(31)

I Another commonly used criteria is the Schwarz-Bayesian criteria
(BIC, Bayesian Information Criteria):

BIC(p) = ln (σ̂2
p) +

p ln (T)

T
(32)

I We compute the AIC and BIC for each lag and select the model
lag that had the minimum AIC or BIC.
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AIC and BIC
I Back to our Example: Portugal GDP first difference.
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Figure: Portugal’s GDP first difference AIC

I We would choose lag 12. However, the good practice in lag
selection prefers smaller models. Since the AIC falls
dramatically at lag 4, the best thing here would be to also choose
lag 4 like the PACF selected. 38 / 45



Parameter Estimation

I For a specified AR(p) model, we can use the conditional least
squares (LS) method which makes use of the (p+1)th
observation.

I The fitted model is:

ŷt = φ̂0 + φ̂1yt−1 + ...+ φ̂pyt−p (33)

and the associated residual is

ε̂t = yt − ŷt (34)

I From the residuals we can estimate the variance of εt by:

σ̂2 =

∑T
t=p+1 ε̂

2
t

T − 2p− 1
(35)
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Parameter Estimation
I Example: Portugal first difference GDP estimation of AR(4):

Parameter Estimate

φ̂0 128.4608
(101.3962)

φ̂1 -0.0888
(0.0560)

φ̂2 -0.0983
(0.0533)

φ̂3 -0.0765
(0.0565)

φ̂4 0.8348
(0.0537)

σ̂2 186434

Table: AR(4) estimates.
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Model Checking

I If the model is adequate, the residual series should behave as a
white noise.

I We can use the ACF of the residuals to check this and/or the
Ljung-Box statistics.

I For an AR(p) model, the Ljung-Box statistic Q(m) follows
asymptotically a chi-squared distribution with m− g degrees of
freedom. g denotes the number of AR coefficients.
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Model Checking

I Example: The ACF of the residuals is:
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Figure: Portugal’s GDP first difference ACF of residuals

I And the Ljung-Box statistic, Q(12) is 28.67 and we reject the
null hypothesis of no serial correlation in the residuals.
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Model Checking

I Hence, the model is not adequate. Both the ACF and the
Ljung-Box statistic give the same conclusion.

I The problem is the seasonality that is still present in the time
series of Portugal GDP first differences.

I We will work on removing this seasonality in the first work
assignment.
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Summary

I Stationary processes allow to use the standard statistics toolkit.

I The mainly reason being that a stationary process is generally
ergodic for the mean.

I An AR process is stationary if all of its characteristics roots lie
inside the unit circle.

I The PACF can be useful for determining the number of lags in an
AR model. So are the AIC and BIC information criteria methods.

I After estimating the AR model, we should check the residuals to
see that they are stationary.
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Questions to think about

I Are AR models flexible enough? Can they capture most time
series behaviours?

I Why does the ACF decay slowly in an AR model?

I How should we interpret the lag parameters in an AR model?
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