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Lecture Objectives:

I Intro to ARCH and GARCH models.

I ARCH and GARCH porperties.

I How to estimate the GARCH model.

I Learn ARCH and GARCH applications.
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Secondary Readings:

I Chapter 3, Applied Econometric Time Series, Enders, Walter,
Fourth Edition.
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Intro

I As we saw before, many macroeconomic series are not
stationary.

I Part of the reason why that is the case is the fact that time series
often do not exhibit constant means. In other words they have
trends. We saw in lecture 5 how to deal with trends.

I Besides the non-stationary nature of the macroeconomic data,
there is also evidence of moments of high volatility and relatively
tranquility. This is particularly true in financial markets. Hence,
the assumption of conditional constant variance is violated.

I In this lecture will show to deal with conditional
heteroskedasticity.
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Example of heteroskedasticity: SP500 returns.
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Intro to ARCH Models

I As it is clear from the two previous examples, some economic
time series exhibit periods of unusually high volatility and some
other moments of low volatility.

I In such cases, the assumption of constant variance
(homoskedasticity) is inappropriate.

I Engle (1982) proposed the Autoregressive conditional
heteroskedastic (ARCH) model to deal with such cases.
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Intro to ARCH Models

I We saw in lecture 3 ARMA models that allowed for a flexible
characterization of conditional mean of a series.

I In the ARMA, model we assumed stationarity which means that
the unconditional mean and variance were both constant.

I The idea of Engle (1982) was to model volatility in a similar
fashion using a model for the variance that yielded a constant
unconditional variance, but a time varying conditional variance.
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Intro to ARCH Models

I Suppose we have the following AR(1) model:

yt = a0 + a1yt−1 + εt

The unconditional mean of yt assuming stationarity is:

E[yt] =
a0

1− a1

and the conditional mean is given by:

Et[yt] = a0 + a1yt−1
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Intro to ARCH Models

I We have also showed before that the unconditional variance of yt

assuming stationarity is:

var(yt) =
σ2

1− a2
1

The conditional variance of yt is given by:

var(yt+1|yt) = Et[ε
2
t+1]

So far we have assumed that it is constant as well equal to σ2.
What if it is not constant?
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Intro to ARCH Models

I One way to proceed is, just like for the conditional mean, to
model the conditional variance as a AR(q) process:

ε2
t = α0 + α1ε

2
t−1 + ...+ αqε

2
t−q + vt (1)

where vt is white-noise. Hence the conditional variance forecast
is:

Et[ε
2
t+1] = α0 + α1ε

2
t + ...+ αqε

2
t+1−q

This is why the model is called ARCH (autoregressive
conditional heteroskedastic).
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ARCH Models

I The model for yt and the conditional variance are estimated
together via maximum likelihood (details later). Moreover, (1) is
not the most convenient representation of the conditional
variance since it complicates to show the model properties.

I Hence, Engle (1982) proposed the following model for the
conditional variance with the lag q = 1:

εt = vt

√
α0 + α1ε2

t−1 (2)

where vt is white-noise with variance σ2
v = 1, and vt and εt−1 are

independent of each other. Moreover, we assume α0 > 0 and
0 ≤ α1 ≤ 1 to ensure the conditional variance is always positive
and stationary.
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ARCH Properties

I Lets start by looking at the moments properties of the ARCH
model. Since vt and εt−1 are independent we have that the
unconditional mean of εt is given by:

E[εt] = E[vt(α0 + α1ε
2
t−1)

1/2]

= E[vt]E[(α0 + α1ε
2
t−1)

1/2] = 0

Since E[vt] = 0. Moreover, since E[vtvt−i] = 0 we have that
E[εtεt−i] = 0 for i 6= 0 as well.

I Hence, we have that the unconditional mean and autocovariances
are zero for εt.
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ARCH Properties

I Now turning into the variance, we will first derive the
unconditional variance of εt:

E[ε2
t ] = E[v2

t ]E[α0 + α1ε
2
t−1]

=
α0

1− α1

Since E[v2
t ] = 1 and the process is stationary (i.e.

E[ε2
t ] = E[ε2

t−1]).
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ARCH Properties

I It seems that the new structure we gave to the error term in the
ARMA model does not have any different properties form what
we saw before.

I The difference falls entirely on the conditional variance:

E[ε2
t |εt−1] = α0 + α1ε

2
t−1 (3)

I The conditional variance will depend on the last periods
variance. This is the ARCH(1) model.

I Hence, the error term continues to be a white-noise process but
with a conditional variance that is now explicitly modelled as
opposed to be assumed constant.
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ARCH Properties

I They key point is that the errors are not independent as they are
connected through their second moments even though their first
moments are uncorrelated.

I The conditional heteroskedasticity of the error term translates
into yt being heteroskedastic as well.

I Periods of volatile errors translate into volatility in yt though the
ARMA equation.

I The following example from Enders help illustrate this point.
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ARCH Simulated Examples
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y Properties in ARCH Models

I Lets take a formal look at the properties of yt. Remember that we
assumed that it followed a simple AR(1) process. In fact, in
general it can be any ARMA(p,q) model.

I Now we will do the opposite and start instead with the
conditional mean and variance of yt:

Et[yt] = a0 + a1yt−1

and

var(yt|yt−1) = Et−1[ε
2
t ] = α0 + α1ε

2
t−1

I Note that the variance of yt is then heteroskedastic. Remember
that α1 cannot be negative. Hence, the smallest conditional
variance possible is α0.
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y Properties in ARCH Models

I Now, lets compute the unconditional moments of yt. To to that,
we will solve for yt and iterate back:

yt =
a0

1− a1
+

∞∑
i=0

ai
1εt−i (4)

I The unconditional mean is the same as in the regular AR process
since E[εt] = 0. Hence, E[yt] =

a0
1−a1

.
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y Properties in ARCH Models

I Since E[εtεt−i] = 0 for i 6= 0, then the unconditional variance of
yt is :

var(yt) =

∞∑
i=0

a2i
1 var(εt−i)

So,

var(yt) =

(
α0

1− α1

)(
1

1− a2
1

)
I Hence, the unconditional variance of yt is also constant and

depends on both the persistence of the conditional variance
process (α1) and the yt process (a1).
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ARCH Models with q lags

I The simple ARCH(1) model can be easily extended for any lag q:

εt = vt

√√√√α0 +

q∑
i=1

αiε2
t−i

I And the properties are similar to the ARCH(1) in the sense that
the unconditional moments are constant, and only the conditional
variance of εt and consequently yt vary over time.
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GARCH Models

I Bollerslev (1986) extended the ARCH model by allowing the
conditional variance to be modelled as a general ARMA model.
This is called the generalized ARCH(p,q) model - GARCH(p,q).

I The error structure of an initial ARMA for yt is given by:

εt = vt
√

ht

where again σ2
v = 1 and

ht = α0

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiht−i

I The conditional variance Et−1[ε
2
t ] = ht. And so we have an

ARMA model for the conditional variance. Note that a
GARCH(0,1) is an ARCH(1).
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GARCH Models Estimation

I We now turn to the estimation of GARCH models. First lets
rewrite the full GARCH model. Let xt be any independent
variable that could include autoregressive terms and/or moving
average terms. For simplicity lets assume a GARCH(0,1):

yt = βxt + εt (5)

εt = vt
√

ht (6)

ht = α0 + α1ε
2
t−1 (7)

I One way to estimate the GARCH model is to estimate (5) using
OLS, take its residuals and square them. Then we can use its
squared residuals asd use OLS on: ε̂2

t = α0 + α1ε̂
2
t−1 + vt
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GARCH Models Estimation

I However, there can be a large loss of efficiency by doing in two
steps. Hence, typically GARCH models estimate (5), (6) and (7)
jointly using maximum likelihood.

I Suppose that εt follows a normal distribution. Then the joint
likelihood of ε1, ..., εT is given by:

L =

T∏
t=1

(
1√

2πht

)
exp

(
−ε2

t

2ht

)
so that the log-likelihood is:

ln L = −T − 1
2

ln 2π − 1
2

T∑
t=1

ln ht −
1
2

T∑
t=1

ε2
t

ht
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GARCH Models Estimation

I Finally, just replace ht with (7) and εt with (5):

ln L = −T − 1
2

ln 2π−1
2

T∑
t=1

lnα0 + α1ε
2
t−1−

1
2

T∑
t=1

ε2
t

α0 + α1ε2
t−1

ln L = −T − 1
2

ln 2π − 1
2

T∑
t=1

ln (α0 + α1(yt−1 − βxt−1)
2)

−1
2

T∑
t=1

(yt − βxt)
2

α0 + α1(yt−1 − βxt−1)2

I We can then maximize ln L with respect to α0, α1 and β.
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GARCH Models Estimation

I The solution involves a complicated non-linear system, thus
there is no solution analytically. However, software packages are
generally able to deliver reliable numerical solutions.

I There are many packages in R that estimate GARCH models. In
this course we will use the fGarch package.
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GARCH Effects Identification
I How do we test for GARCH effects in our series?

I We will cover 4 different approaches that can help identifying
GARCH effects. All of them use the residuals of an estimated
ARMA model to construct their respective tests:

1. ACF of the squared residuals ε̂2
t . Recall, that in large samples the

standard deviations of the autocorrelation coefficient can be
approximated by 1/

√
T . If we have significant lags for the ACF,

then this is indicative of GARCH effects.

2. Ljung-Box Q-statistics can again be used for groups of ACF
coefficients. The statistic:

Q = T(T + 2)
n∑

i=1

ρ2
i /(T − i)

Which follows a χ2 distribution with n degrees of freedom if the
squared residuals are serially uncorrelated. If we reject the null,
then there is evidence of GARCH effects.
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GARCH Effects Identification
3. Regress these squared residuals on a constant and on the q

lagged values ε̂2
t−1, ε̂

2
t−2, ..., ε̂

2
t−q:

ε̂2
t = α0 + α1ε̂

2
t−1 + ...+ αqε̂

2
t−q

If there are no GARCH effects, then this regression should
explain very little of the squared residuals. Hence, the coefficient
of determination R2 should be very low. Under the null of no
ARCH effects, the statistic TR2 follows a χ2 distribution with q
degrees of freedom. If TR2 is large we reject the null of no
ARCH effects. This test is also called a Lagrange multiplier test
(LM).

4. F-test on the same regression under the null that
α1 = α2 = ... = αq = 0. In small samples the F-test
outperforms the TR2 test. The F-test has q degrees of freedom in
numerator and T − q in the denominator. If we reject, then there
is evidence of GARCH effects.
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GARCH Methodology

1. Estimate a regression model, typically an ARMA model in time
series, but could be any regression model.

2. Test the residuals for autocorrelation and then for GARCH
effects

3. If GARCH effects are detected, re-estimate the GARCH model
with maximum likelihood.

4. Check if the model is adequate. In other words look at the
significance of paramenters, check if the model is stable and
finally look at the standardize residuals to test whether they seria
correlated and if there are any remaining GARCH effects.
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Example: Great Moderation
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Example: Great Moderation

I Enders example show that a ARCH(1) model offers a good
description of the data.

I Moreover the dummy for post-1984 is significant.
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