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Lecture Objectives:

I Motivation for using VAR in macro.

I Structural VAR vs Reduced-form VAR.

I VAR properties including conditions for stationarity.

I VAR lag selection and estimation.

I VAR forecast and identification.

I SVAR using the recursive identification strategy and the related
Choleski Decomposition.

I Impulse response function and their confidence intervals
construction and the forecast error variance decomposition.

I Granger Causality.



Secondary Readings:

I Chapter 5, Applied Econometric Time Series, Enders, Walter,
Fourth Edition

I Chapters 10 and 11, Time Series Analysis, Hamilton, James, first
edition



Motivation

I Two main approaches:

1. Structural Models

I Traditionally, macroeconometric hypothesis tests and forecasts
were conducted using large-scale macroeconometric models.
Example of a small structural model:

Pt = φ0 + φ1zt + ε1t

Qt = θ0 + θ1at + ε2t

I Macroeconomists used to estimate systems like above but with a
very high number of equations.

I Implicit in these systems are identification restrictions. In this
example for instance, it is assumed zt only affects Pt and that at

only affects Qt. Moreover, it is assumed that Qt and Pt are
unrelated.



Motivation

2. Reduced-form Models

I These models were primarily used to study the effect of macro
policies on a particular variable of interest. Many monetarists
used such models to study the effect of money on the economy.
Example:

yt = φ0 + φ1yt−1 + φ2mt + φ3mt−1 + εt



Motivation

I There were serious problems with both of the previous
approaches.

I For the structural approach it was very hard to defend ad hoc
restrictions to identify the systems. This was particularly true for
high dimensional systems.

I Moreover, variables typically affect each other, i.e. they are
endogenous.

I For the reduced-form approach, for instance, it is hard to defend
that only money affects GDP and not the other way around.

I Finally and more importantly, the Lucas critique showed that
such models were not suited to analyze policy effects in the
macroeconomy.



Motivation

I Sims (1980) proposes the use of VARs and saves the day.

I VAR models continue to be the work-horse of empirical
macroeconomics and finance.

I They are extremely useful as a descriptive tool of the dynamics
of a set of variables.

I They are also a powerful tool in forecast.

I The ability of structural representations of VAR models to
differentiate between correlation and causation, in contrast, has
remained contentious



Motivation

I Structural interpretations of VAR models require additional
identifying assumptions that must be motivated based on
institutional knowledge, economic theory, or other extraneous
constraints on the model responses.

I Only after decomposing forecast errors into structural shocks
that are mutually uncorrelated and have an economic
interpretation can we assess the causal effects of these shocks on
the model variables.

I The structural VAR model literature has continuously evolved
since the 1980s. Even today new ideas and insights are being
generated. In the next lecture we review many of these
alternative identification schemes.



Intro to VAR

I Lets start with a two variable case with just one lag.

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (1)

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt (2)

Where εyt, εzt are both white noise processes with variance σy, σz

respectively. For now, we assume yt and zt are stationary.

I (1) and (2) constitute a Structural two-variable and one-lag VAR
model.

I The structure of the system incorporates feedback because yt and
zt are allowed to affect each other.

I εyt, εzt are pure innovations. They do not depend on any other
shock and are easy to interpret.



Intro to VAR

I Equations (1) and (2) cannot be estimated using OLS because of
the simultaneous equation bias.

I However, we can manipulate the system using matrix algebra.

[
1 b12

b21 1

] [
yt

zt

]
=

[
b10
b20

]
+

[
γ11 γ12
γ21 γ22

] [
yt−1
zt−1

]
+

[
εyt

εzt

]

Or more compactly:

Bxt = Γ0 + Γ1xt−1 + εt

I where all variables are in vector notation.



Intro to VAR

I We can pre-multiply both sides by B−1 to obtain the
Reduced-form VAR:

xt = A0 + A1xt−1 + et (3)

Where A0 = B−1Γ0, A1 = B−1Γ1 and et = B−1εt

I Note that (3) is just a vector version of an AR(1) process. Hence
the VAR name.

I Notice that the inverse of the matrix B connects the structural
shocks and reduced-form shocks through:

et = B−1εt



Intro to VAR
I We can rewrite (3) as

yt = a10 + a11yt−1 + a12zt−1 + e1t (4)

zt = a20 + a21yt−1 + a22zt−1 + e2t (5)

I (1) and (2) is called the Structural VAR while (4) and (5) is
called the Reduce-form VAR.

I Note that e1t, e2t are both combinations of the structural shocks
via et = B−1εt. Hence

e1t =
εyt − b12εzt

1− b12b21
(6)

e2t =
εzt − b21εyt

1− b12b21
(7)



Intro to VAR

I Note that e1t, e2t are themselves also white noise processes
because they are nothing but linear combinations of white noise
processes.

I However, they are generally correlated with each other:

E(e1te2t) =
−(b21σ

2
y + b12σ

2
z )

(1− b12b21)2

I Moreover, notice that there is no clear interpretation for et in
contrast with εt. Lets write the variance-covariance matrix of e:

Σ =

[
σ2

1 σ12
σ21 σ2

2

]
(8)



VAR Stability and Stationarity

I It should not come as a surprise that the stability conditions are
similar to those of AR models.

I Moreover, they are also closely connected with stationarity. All
we need is that An

1xt−n−1 → 0 as n→∞ in (3).
I The difference is that before A1 was a real number and now it is a

Matrix.

I However, it can be shown that if each eigenvalue λ of A satisfies
|λ| < 1, then for any vector x,

lim
n→∞

Anx = 0 (9)



VAR Stability and Stationarity

I Hence, once again it is about the characteristic polynomial:

(a11 − λ)(a22 − λ)− a12a21

λ2 − λ(a22 + a11) + a11a22 − a12a21

I Hence, the VAR is stationary if both roots λ1, λ2 lie within the
unit circle.



VAR Stability and Stationarity

I Again we can alternatively do it by using the Lag-operator in (4)
and (5):

yt = a10 + a11Lyt + a12Lzt + e1t

zt = a20 + a21Lyt + a22Lzt + e2t

I One can solve this system and find that:

yt =
K

(1− a11L)(1− a22L)− a12a21L2

I Where K depends on et and coefficients. We can find zt and it
turns out it has exactly the same denominator.

I Hence the stability and stationarity condition amounts for the
solution to the denominator to be outside the unit circle.



VAR Stability and Stationarity
I Example:Panel (a): a10 = a20 = 0, a11 = a22 = 0.7 and

a12 = a21 = 0.2
Panel (b) a12 = a21 = −0.2
Panel(c) a11 = a22 = a12 = a21 = 0.5
Panel (d) a10 = 0.5

Figure: Enders VAR examples



VAR Stability and Stationarity

I If the individual variables are stationary, the VAR will also be
stationary because it is just linear combinations of stationary
processes/

I If the VAR is stationary, it is also ergodic and standard
hypothesis testing can be done.

I However, there is a debate on whether the series should be
stationary or not. Sims for instance recommends against
differencing on the grounds that information is lost.

I If the purpose is to understand dynamic interrelationships
between series then, the variables do not need to be stationary.

I If on the other hand, one cares about hypothesis testing and
forecast, then the series should be stationary.



VAR Lag Selection

I We generally use the information criteria to select the number of
lags in a VAR. There are other methods however.

I It is also important to take into account two things when
selecting the number of lags:

1. Parsimonious models. That is, smaller number of lags are
preferred. The models are more accurate.

2. Seasonality. Although there are some ways we will discuss later
on how to deal with it, some lags are still more important than
others. Example: The lag 4 is usually very important in a
quarterly series.



VAR Estimation

I Note that the Reduced-form of the VAR (4) and (5) contains only
pre-determined variables.

I Hence, we can use OLS estimation equation by equation.

I Moreover, note that (4) and (5) also forms a SUR due to the
correlation between the errors

I However, since all regressions have identical right-hand side
variables, we would not gain any efficiency by exploring this
correlation.

I Typically, we estimate VARs using OLS equation by equation.



VAR Estimation

I One thing that you probably have noticed by now is that the
number of coefficients increases very fast as one increases the
number of lags in a VAR

I Even for a small VAR, the VAR is typically overparameterized in
that many of these coefficient estimates will be insignificant

I However, the goal is to find the important interrelationships
among the variables.

I Improperly imposing zero restrictions may waste important
information.

I Moreover, the regressors are likely to be highly collinear so that
the t-tests on individual coefficients are not reliable guides for
paring down the model.



VAR Forecast

I We can use the techniques learned in the AR processes to
analyse the properties of the VAR forecast using (3).

I However, for forecast it is useful to throw away the insignificant
parameters. Moreover, it is essential that the series are stationary.

I After throwing away the insignificant coefficient, one can
estimate the near-VAR using SUR (note that after throwing away
coefficient, the right-hand side variables becomes different
across equation and higher efficiency can be obtain via SUR).



VAR Identification

I Lets go back to our structural VAR:

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt (10)

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt (11)

I We know we cannot directly estimate (10) and (11).

I OLS of the reduced-form representation of (10) and (11) give us
the two elements of A0, the four elements of A1 and the four
elements of the variance-covariance matrix Σ using the residuals.
However, note that σ12 = σ21.

I In total the OLS of the reduced-form give us 9 estimates.



VAR Identification

I Identification of the VAR as to with our ability to Identify (10)
and (11) with our estimates of the reduced-form (4) and (5).

I In other, words can we recover all the parameters of (10) and
(11) with the OLS estimates of the reduced-fom VAR?

I Without any further assumptions, the answer is no.

I The structural system has 10 parameters while the reduced-form
estimates only give us 9.



SVAR - Recursive VAR

I The first structural VARs used the recursive identification
strategy proposed by Sims. Sometimes, they are just called
recursive VARs.

I Lets take a look at the matrix, B−1,that connected both
representations of a VAR:

et = B−1εt =

[
1 b12

b21 1

]−1

εt ⇒

et =

[
1

1−b12b21
− b12

1−b12b21

− b21
1−b12b21

1
1−b12b21

]
εt



SVAR - Recursive VAR

I Note that if we either restrict b12 = 0 or b21 = 0 we can identify
εt from et. Lets see why:

I Suppose b21 = 0:

et =

[
1 −b12
0 1

]
εt ⇒[

e1t

e2t

]
=

[
1 −b12
0 1

] [
εyt

εzt

]



SVAR - Recursive VAR

I So:

e1t = εyt − b12εzt

e2t = εzt

I Hence the variance and covariance of et estimated, (3
parameters), is enough to recover σ2

y , σ2
z plus b12 (3 parameters):

var(e1t) = σ2
y + b2

12σ
2
z

var(e2t) = σ2
z

cov(e1t, e2t) = −b12σ
2
z



SVAR - Recursive VAR

I These results can be generalized. Without going to much into
detail, lets go back to the mapping between structural and the
reduced-form model:

et = B−1εt (12)

I Hence,

Σ = B−1Σε(B−1)T (13)

I The identification problem comes from the fact there are n2+n
2

known parameters since Σ is symmetric (remember σ12 = σ21
etc) and we need to recover n2 unknown parameters.

I The unknown parameters are n2 − n from B plus n values of Σε.
Hence the n2



SVAR - Recursive VAR
I In order to exactly identify the system, we need to impose

n2 − n2+n
2 = n2−n

2 restrictions.
I A recursive formulation of the structural VAR imposes exactly

that number of restrictions on B by imposing zero restrictions on
the structural parameters in a recursive manner. In general for a
VAR with n variables:

B =


1 b12 · · · b1n

b21 1 · · · b2n
...

...
. . .

...
bn1 bn2 · · · 1

 (14)

I The recursive assumption imposes:

B =


1 0 · · · 0

b21 1 · · · 0
...

...
. . .

...
bn1 bn2 · · · 1

 (15)



SVAR - Recursive VAR

I Note that the number of restrictions is exactly n2−n
2 . Thus the

recursive structure exactly identifies

I There is an alternative way of doing the recursive approach that
is numerically easier to compute (This is what software packages
use) using the Choleski Decomposition and is equivalent

I One can always do a Choleski decomposition of the residuals
variance-covariance matrix Σ = LLT where L is triangular and
use it to recover the structural errors.

εt = L−1et (16)



SVAR - Recursive VAR

I However L has positive elements in its diagonal different from 1.
Hence, L has exactly n2−n

2 . What about the Σε? No need, they
will be by construction normalized to 1:

var(εt) = L−1var(et)(L−1)T

Σε = L−1Σ(L−1)T

Σε = L−1LLT(L−1)T

Σε = I

I It turns out both approaches are equivalent.



SVAR - Recursive VAR

I Caveat Note: To impose the n2−n
2 in a recursive way is sufficient

to recover all the parameters. But in general this is just a
necessary condition and not sufficient.

I The SVAR main tools are:

1. Impulse response Functions

2. Variance Decomposition

I Note that both of them only make sense in a structural VAR
(why?)



SVAR - Impulse response Function

I Back to our reduced-form VAR

xt = A0 + A1xt−1 + et (17)

I Just like in the AR model, we can also rewrite the reduced-form
VAR as VMA(∞):

xt = µ+ et + A1et−1 + A2
1et−2 + ... (18)

Where µ is the unconditional mean. The coefficients A1 can be
seen as impact multipliers

I However, remember that et include many structural shocks.
Hence, it is hard to interpret (18)



SVAR - Impulse response Function

I After identification, the structural shocks can be recovered
Lεt = et. Given L from the Choleski decomposition we can use it
to get the impulse-response function that can be interpreted:

xt = µ+ Lεt + A1Lεt−1 + A2
1Lεt−2 + ... (19)

I If the VAR is stationary, the impact multipliers vanish.

I Moreover, given that for each order of variables we have a
different unique L. Depending on the order we can get different
impulse response functions.

I This is a problem and has generated until today many proposals
to overcome this identification problem.



SVAR - Impulse response Function
I Example:

Figure: Enders Figure 5.7



SVAR - Impulse response Function Confidence Intervals

I The impulse response functions are very complex objects
(non-linear functions of coefficients)

I Generally, we don’t know their distribution

I We need to rely on the following procedures:

1. Bootstrap bias corrected

2. Monte Carlo integration

3. Delta method

I Kilian (1998) showed Bootstrap bias corrected is the best for
small sample analysis. R uses this procedure.



SVAR - Impulse response Function Confidence Intervals
I Example:
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Figure: Responses of IP, CPI and FF to FF shock



SVAR - Impulse response Function Confidence Intervals
I Example: First Differences
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SVAR - Variance Decomposition
I Lets start again with the VMA representation of the VAR:

xt = µ+

∞∑
i=0

Ai
1Lεt−i

I To simplify the algebra, lets define φi = Ai
1L. Then, taking n

steps forward:

xt+n = µ+

∞∑
i=0

φiεt+n−i

I Using this representation, we can easily find the n-period
forecast error xt+n − E(xt+n):

xt+n − E(xt+n) =

n−1∑
i=0

φiεt+n−i (20)



SVAR - Variance Decomposition

I In our two example of two variables VAR y, z, lets focus on the y
portion of (20).

yt+n − E(yt+n) =φ11(0)εyt+n + φ11(1)εyt+n−1 + ...+ φ11(n− 1)εyt+1

+ φ12(0)εzt+n + ...+ φ12(n− 1)εzt+1

I Denote the n-step-ahead forecast error variance of yt+n as σ2
y (n)

σ2
y (n) =σ2

y (φ11(0)2 + ..+ φ11(n− 1)2)

+ σ2
z (φ12(0)2 + ..+ φ12(n− 1)2)

(21)

I Hence, we can decompose the forecast variance into the variance
of the various structural shocks.



SVAR - Variance Decomposition
I Example:

Figure: Forecast Error Variance Decomposition of IP



Granger Causality

I Granger causality has to do with the ability of a current variable
y in predicting future values of another variable z.

I Note that is only future and not current! Also the word causality
should not be taken serious in the sense of the usual causality in
microeconometrics.

I If say z Granger causes y and not the other way around, then
there is stronger grounds for causation but still not definite.

I To test for Granger causality of z on y we use a F-test on the
coefficients on the z lags in the y equation. If we can reject that
they are zero then z granger causes y



Granger Causality

I Example:

Figure: Does FF Granger cause IP and CPI



Summary of VAR in Practice

1. If we want to do hypothesis testing and forecast, we need to
check if the variables included in the VAR are stationary. (ACF
can be helpful, we will see more formal tests on this issue next
lecture)

2. Choose the VAR lag p. Generally we can use the AIC and SBC
to do this.

3. Estimate the VAR with OLS.

4. Again, for hypothesis testing and forecast you need to check the
parameter estimates for significance. Otherwise, just skip this
step.

5. Choose an identification strategy and compute the IRF and the
FEVD.



Questions to think about

I How can we get from a Reduced-Form VAR to a SVAR and
vice-versa?

I Why can’t we identify the SVAR parameters with the
reduced-form VAR?

I Does the Recursive identification always deliver exact
identification?

I How can we interpret the IRF? What is the scale of the IRF at
each step?

I Can we infer causality from the FEVD?
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