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Lecture Objectives:

I Linear vs Nonlinear models properties.

I Intro to TAR and STAR models.

I Intro to Markov Chains.

I Markov switching models.
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Secondary Readings:

I Chapter 7, Applied Econometric Time Series, Enders, Walter,
Fourth Edition.

I Chapter 22, Time Series Analysis, Hamilton, James, first edition
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Nonlinear Models Motivation

I So far, we have discussed linear time series models. The linear
models are at the forefront of time series research.

I Partly, their popularity is related with the simplicity of the
models. But we also saw that the Wold decomposition provides
solid theoretical basis to take the linear models seriously.

I Moreover, if the time series are Gaussian, then the linear
projection is better than any nonlinear forecast!
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Nonlinear Models Motivation

I However, often times in real applications, the processes are
found to be non-Gaussian.

I And the Wold decomposition, although important, provides a
representation only and not a full probabilistic description of
time series. Lets recall the Wold Decomposition:

I Wold Decomposition: any weakly stationary stochastic process,
zt, with finite mean, µ, that does not contain deterministic
components, can be written as a linear function of uncorrelated
random variables, εt , as:

zt = µ+

∞∑
i=0

φiεt−i (1)

where εt is a white noise process and φ0 = 1
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Nonlinear Models Motivation

I The Wold decomposition thus only pins down the first and
second moments of any process zt.

I Hence, it is possible for ε to have different third (skewness) and
fourth (kurtosis) moments with the same representation as in (1).
In other words, many processes could be represented as (1).

I In order, to make the best forecast possible, it is important to take
into account the full probabilistic description of zt.

I Note, that if εt is assumed to be Gaussian, then (1) becomes
more than a representation, it becomes a full probabilistic
description of zt. In this case, the linear prediction is optimal.
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Nonlinear Models Motivation

I What are the behavioral facts that motivate the usage of
nonlinear models? Or to put it differently, what are the
characteristics in the data that generate non-Gaussian processes?

I Rare events, structural breaks and asymmetries.

I We will cover some popular models that have been useful in
dealing with data that present such characteristics: threshold AR
(TAR), smooth transition AR models (STAR) and Markov
switching models.
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TAR model

I The TAR (Tong 1983) is an example of regime switching model
that allows the behaviour of a series yt to depend on an particular
state of the system (regime).

I In the business cycle, the behaviour of some aggregates change
dramatically during a crises. The volatility increases, but also the
persistence of the mean model can also change.

I In such instances, the TAR model can provide an helpful
description of the data. One major advantage of this model is
that it can be estimated via OLS. This is generally not the case as
regime switching models are complex and usually require more
advanced estimation techniques.
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TAR model

I Suppose that the persistence of yt is different if the sequence
takes positive or negative values. Let a1 be the persistence of yt if
it takes positive values and a2 the persistence otherwise.
Moreover, let |a2| > |a1| such that negative values of yt−1 are
more persistent. Then we have:

yt =

{
a1yt−1 + ε1t if yt−1 > 0
a2yt−1 + ε2t if yt−1 ≤ 0

(2)
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Linear vs Nonlinear Models
I Linear models are symmetric and the adjustment process is the

same regardless of the initial condition. Consider the
homogeneous part of the TAR model:

Figure: Enders figure.
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TAR Estimation

I The errors are responsible for the regime switching, as in each
regime the homogeneous solution would just converge to its
respective long-term mean.

I If we also assume that the error variance is the same across the
two regimes we can write the model as:

yt = a1Ityt−1 + a2(1− It)yt−1 + εt (3)

where It = 1 if yt−1 > 0 and It = 0 if yt−1 ≤ 0.

I It is a dummy variable. We use it ti construct the variables
coming out of the product of this dummy variable and yt−1. We
can then use simple OLS to estimate (3).
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General TAR

I Let τ be a threshold that determines when we are in each regime,
let p be the number of lags of the AR process in the first regime
and r the number of lags in the second regime, a more general
version of (3) is given by:

yt = It

[
a10 +

p∑
i=1

a1iyt−i

]
+(1−It)

[
a20 +

r∑
i=1

a2iyt−i

]
+εt (4)

where It = 1 if yt−1 > τ and It = 0 if yt−1 ≤ τ .
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General TAR Estimation
I If τ is known, we can again use OLS. Note that adjustment

process does not need to be continuous. Hence, this model can
also capture sudden jumps.

I The estimation procedure follows the same variable creation for
the posterior application of OLS.

I Example with τ = 0:

Figure: Enders TAR data preparation example.
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General TAR Estimation

I If the variances of the errors are assumed to be different so that
we have:

yt =

{
a10 + a11yt−1 + ...+ a1pyt−p + ε1t if yt−1 > τ

a20 + a21yt−1 + ...+ a2ryt−r + ε2t if yt−1 ≤ τ
(5)

I In this case, we need to separate the data according to the
threshold criteria and then estimate each equation by OLS
separately.
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General TAR Estimation

I For instance, take the previous example and assume once again
that τ = 0

I Then, we just need to separate the dataset into two subsets:

Figure: Enders TAR data preparation example 2.

I We apply OLS for each sub-dataset in order to estimate (5).
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TAR Estimation with Unknown Threshold

I Often times, in practice we do not know the value of the
threshold.

I Chan (1993) shows how to obtain a super-consistent estimate of
the threshold τ . This is also called the SETAR model where SE
stand for Self-Exciting.

I The idea is to use the value of observations to find the threshold.

I The threshold should be within the data limit points otherwise
there is only one regime.

I Finally, take 15% of the highest and lowest observations as
possible candidates, and estimate the TAR model for each
possible remaining candidate. The estimate with the smallest
residual sum of squares contains the consistent estimate of the
model.
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TAR Estimation with Unknown Threshold
I Example of data trimming in searching for a threshold:

Figure: Enders Figure
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Pretesting for TAR model

I In the TAR case, the linear model is nested in the TAR model.
Hence, we can use a F-test with the null of a10 = a20 and
a11 = a21.

I However, under the null hypothesis the nuisance parameter τ is
unidentified.

I Hansen (1997) showed how to appropriately obtain the
appropriate critical values using a bootstrapping procedure.

F∗ =
(SSR∗r − SSR∗u)/m
SSR∗u/(T − 2m)
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TVAR model

I The TAR can be extended to a multivariate framework:

xt =

{
A10 + A11xt−1 + ε1t if qt−1 > τ

A20 + A21xt−1 + ε2t if qt−1 ≤ τ
(6)

I Note, that when we drop the linearity, the Wold decomposition
can no longer be used to calculate the IRFs.

I The IRFs now will be different depending on the sign and the
regime that we are in. They are history dependent.

I The general point is that the impulse responses from a nonlinear
model depend on the sign and magnitude of the shocks as well as
the initial state, or history, of the system.
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TVAR model
I Example of nonlinear IRFs:

Figure: Enders Figure
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STAR Models

I The TAR model imposes a very sharp transition into another
regime. In some cases, the regime switch takes place over a
smooth transition.

I Smooth transition autoregressive (STAR) models allow the
autoregressive parameters to change slowly. Consider the
logistic version of the STAR model called LSTAR:

yt = α0 + α1yt−1 + θ[β0 + β1yt−1] + εt (7)

where

θ = [1 + exp (−γ(yt−1 − c))]−1 (8)
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STAR Models

I If we are interested in a symmetric behaviour whereby the
regime has more to do with the extremes behaviours, then the
exponential STAR can be more appropriate (ESTAR):

yt = α0 + α1yt−1 + θ[β0 + β1yt−1] + εt (9)

where

θ = 1− exp (−γ(yt−1 − c)2) (10)

I In both cases, the γ is called the smoothness parameter.
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LSTAR vs ESTAR Models

Figure: Enders Figure
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Nonlinear Models in R

I There is an exceptional package in R called tsDyn.

I It includes functions to estimate and analyze the nonlinear
models we have seen thus far, with the exception of the ESTAR
model.

I It also includes specific tests to detect a specific form of
nonlinearity associated with a particular nonlinear model.

I The ideal way of testing for nonlinear effects is precisely to do it
against a particular form of nonlinearity.
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Testing for Nonlinear Effects - Portmanteau Tests
I However, sometimes one does not have a prior idea of the form

of nonlinearity.

I Portmanteau tests usually refer to residual-based tests that do not
have a specific alternative hypothesis.

I The BDS (Brock, Dechert, Scheinkman, and LaBarron (1996)) is
arguably one of the most popular tests for independence.

I The test examines the distance between different pairs of
residuals. If the residuals are independent, then the probability
that the distance between any pair is less then say d should be the
same.

I The only problem with this test with regards to nonlinear effects,
is that dependence can be not only associated with nonlinear
effects but also with other misspecification problems such as
serial correlation, parameter instability, structural breaks and
other issues.
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Markov Chains Quick Review

I Before introducing the Markov switching models (Hamilton
1989), we will review the basic properties of Markov Chains.

I If we have a discrete finite number of states st ∈ S, a Markov
chain fully describes the stochastic dynamics of the states st.

I The key assumption is that only the current state is need in order
to have a full probabilistic description of next period’s state. That
is:

Prob(st+1|st, st−1, ...) = Prob(st+1|st) (11)
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Markov Chains Quick Review

I Hence, we can fully describe the systems evolution with a n× n
transition matrix P:

pij = Prob(st+1 = j|st = i) ∀i, j
pij ≥ 0 ∀i, j

n∑
j=1

pij = 1 ∀i

I If st has an initial distribution π0, this distribution together with
P is able to characterize the stochastic properties of st up to any
period T .
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Markov Chains Quick Review

I It is also possible to find the unconditional distribution at given
time t:

π′t+1 = π′tP (12)

Hence,

π′t = π′0Pt (13)
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Markov Chains Quick Review

I A stationary distribution is one in which:

π′ = π′Pt (14)

I Every Markov chain has at least one stationary distribution.
However, under some mild conditions, it can be shown that is
has a unique stationary distribution.

I Theorem: If P is both aperiodic and irreducible, then:

1. P has exactly one stationary distribution π∗

2. For any initial π0, we have ||π′0Pt − π∗|| → 0 as t→∞

I One simple way to check if the conditions are met is that the all
the elements of P must be strictly positive.
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Markov Chains Quick Review

I Example: Consider a worker who at any given time t is either
unemployed (state 1) or employed (state 2).

I Suppose that an employed worker loses his job with probability
β and that an unemployed worker finds a job with probability α.

I In this case S = {1, 2} and p12 = α and p21 = β. In this case P
is given by:

P =

[
1− α α
β 1− β

]
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The Markov Switching Model

I The basic TAR model allows the regime to switch depending on
the value of yt−1. Hence, the switch is endogenous.

I The Markov switching model developed by Hamilton (1989)
proposes that the regime switches are exogenous.

I Suppose, again that the AR process depends on which regime we
are in:

yt =

{
a10 + a11yt−1 + ε1t if we are in regime 1
a20 + a21yt−1 + ε2t if we are in regime 2

(15)

I The difference now is that the regime changes are given by a
Markov chain instead of by the value of the observed series.
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The Markov Switching Model

I In this case, the probability of going from regime 1 to regime 2 is
p12 and the other way around probability is p21.

I In the Markov switching model, these probabilities will be
estimates together with the other parameters of interest.

I The Markov switching models require more advanced estimation
techniques. They are typically estimated via quasi-maximum
likelihood or Gibbs sampling.
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Good Luck!!

Thank you!!
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