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Abstract

Since 1980 there has been a steady increase in earnings inequality alongside rapid
technological growth in the U.S. economy. To what extent does technological change
explain the observed increase in earnings dispersion? How does it affect the optimal
progressivity of the tax system? To answer these questions we develop an incomplete
markets model with occupational choice. We estimate an aggregate production func-
tion with capital-occupation complementarity and four occupations that differ with
respect to cognitive complexity and routine task intensity. We calibrate our model
to resemble the U.S. economy in 1980 and find that technological transformation can
fully account for the increase in earnings dispersion between 1980 and 2015. The
main driver is the rising relative wage of non-routine cognitive occupations, which
benefit the most from complementarity with capital. In isolation, increasing earnings
inequality strengthens the case for redistributive policies. However, we find that a
significant drop in tax progressivity is socially optimal. Lower progressivity leads
to an inflow of workers into higher-paid occupations. This increases output but also
raises the wages of the occupations at the bottom of the wage distribution, dampen-
ing the redistributive motive of the planner.
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1 Introduction

Earnings inequality in the U.S. has increased steadily since 1980, see Figure 1 (left
panel)’. What accounts for the large increase in inequality, and what are the policy im-
plications? There is currently a heated debate about these questions among academics,
policymakers, and the public press. A common view, and perhaps conventional wisdom,
is that one should meet increased inequality with higher and more progressive taxes.

Alongside the increase in inequality, there has also been technological progress. The
right panel of Figure 1 displays a rapid fall in the relative price of equipment invest-
ment goods, which can be viewed as reflecting Investment-Specific Technological Change
(ISTC) such as cheaper access to computing power and storage (Krusell et al., 2000;
Karabarbounis and Neiman, 2014). In this paper, we answer the following questions: (i)
to what extent does technological change explain the observed increase in earnings in-
equality? (ii) how does it affect the optimal progressivity of the tax and transfer system?.

To answer these questions, we develop a life-cycle, incomplete markets, overlap-
ping generations model featuring uninsurable idiosyncratic earnings risk, technologi-
cal change, a detailed tax system, and occupational choice. Central to our approach is
that we adopt the framework of Autor et al. (2003) where occupations differ in terms
of the nature of the tasks that are being performed. There are four main categories of
tasks: Non-routine cognitive (NRC), non-routine manual (NRM), routine cognitive (RC)
and routine manual (RM). Households choose an occupation at the beginning of their
work lives based on an idiosyncratic cost of acquiring the necessary skills and on the
distribution of future earnings in each profession.

Our first contribution is to expand on the seminal paper by Krusell et al. (2000) by
specifying and estimating an aggregate production function with labor inputs based
on occupation categories rather than the education levels of the workforce. Using our
framework, we can both explain the changes in skill premia between our four occupation
groups as well as the increase in earnings inequality in the U.S., measured as the variance
of log earnings, between 1980 and 2015*. Our second contribution is to investigate the
implications of technological change for optimal tax progressivity in this framework. We
show that the technological change between 1980 and 2015, particularly ISTC, calls for a
significant drop in tax progressivity.

Our model is, in some respects, a standard life-cycle model with incomplete markets
and idiosyncratic risk. It is, however, distinguished by a once and forever choice between

'In fact Figure 1 shows a steady increase since 1970. However, our paper will, for the most part, focus
on the period from 1980 to 2015 due to the limited availability of other data before 1980.
2Krusell et al. (2000) explain the college skill premium but do not study other measures of inequality.
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Figure 1: Inequality and ISTC.

our four occupations at the beginning of work-life3. Agents make their choice based on
an idiosyncratic cost of acquiring the necessary skills and on the expected lifetime utility
from consumption and work effort in each profession.

We estimate an aggregate production function where each of the four occupations,
capital equipment and capital structures, are inputs. Our production function has three
sources of technological growth, ISTC, latent occupation-biased technological change
(LAT) and TFP growth. To quantify the labor inputs in each occupation, we apply the
cross-walk classification table developed by Cortes et al. (2020) to map tasks into occu-
pation codes. The extent to which labor demand and wages in each of these occupation
categories will affect the wage distribution is determined by their respective roles in the
production function, by latent occupation-biased technological change, and, in particu-
lar, by their complementarity with capital equipment. The effect of a fall in the price of
equipment investment goods (ISTC) is to spur capital accumulation and create increased
demand for workers in occupations with tasks that are more complementary to capital
relative to those that are less so. Since there are barriers to mobility between occupations
and different entry costs, the rise in labor demand for some occupations creates a wage
premium relative to workers in other occupations.

We find that technological change (in particular ISTC) can fully account for the in-

3Some workers do of course retrain; however, Cortes et al. (2020) provide evidence of the fall in routine
employment in the U.S. being primarily caused by declining inflow rates among younger workers



crease in earnings inequality between 1980 and 2015%. The main driver is the rising
relative wage of non-routine cognitive occupations, which benefit the most from com-
plementarity with capital. Thus, investment-specific technological change stands as a
major engine behind the growth of earnings dispersion. ISTC alone accounts for about
2/3 of the increase in earnings dispersion, and latent occupation-biased technological
change accounts for the remaining 1/3.

Our optimal tax experiment is to maximize the expected steady-state welfare of an
unborn individual with respect to tax progressivity and level>, taking government ex-

penditure as exogenously given®

. We then study the interaction between optimal tax
progressivity and our three sources of technological growth, and we use the framework
of Flodén (2001) to decompose the welfare effects of progressive taxation into the contri-
butions resulting from its impact on efficiency, redistribution and insurance.

We find the optimal value of our measure of tax progressivity in 1980 to be 0.15 (close
to the estimated benchmark value of 0.19), whereas, in 2015, a value of 0.05 is optimal.”
The main mechanisms driving this result are the high productivity of NRC professions
in 2015, the positive effect of shifting workers to NRC occupations on the wages of lower-
paid occupations, and the higher returns to wealth with the 2015-technology®. Reducing
tax progressivity shifts workers towards higher-paying occupations, which raises output
as well as the wages in lower-paid occupations, but also reduces the benefits of redis-
tribution and insurance from the tax system. This tradeoff is, however, tilted towards
flatter taxes with the technological transformation between 1980 and 2015.

Among our three sources of technological growth, ISTC, is solely responsible for
the drop in optimal tax progressivity (LAT and TFP growth pulls in the other direc-
tion). From the perspective of the social planner, all three welfare impacts of progressive
taxation (efficiency, redistribution and insurance) are tilted towards lower optimal pro-
gressivity with higher ISTC. First, the efficiency channel is stronger because there is
more capital and stronger complementarity with high-earning professions. The benefit
from lowering the marginal tax rates on high earners and getting people to select for

4This finding is consistent with Barro (2000) who finds that across rich counties inequality and eco-
nomic growth are correlated.

5We apply a non-linear tax function as in Benabou (2002) and Heathcote et al. (2017), y, = 1 — 6gy~%
where 6y and 6; define the level and progressivity, respectively.

®This is the classic tax experiment in the literature on incomplete market models with heterogeneous
agents. The recent literature also studies transitions, but given the complexity of our model, where we
have to solve for five different prices in equilibrium, we focus on steady states for now.

7Indeed, there is evidence of some reduction in tax progressivity in the U.S. since 1980. Wu (2021)
finds that this measure of progressivity has fallen from 0.19 to 0.14 between 1980 and 2015.

8See Jorda et al. (2019) for evidence of higher return rates on wealth in the U.S. Moll et al. (2019) also
argue that technological growth raises the return on wealth.



NRC professions is thus higher. Second, although there is more earnings inequality in
2015, which creates additional incentives for redistribution, more agents moving from
low-earning to high-earning occupations increases the wage rates of low earners and
decreases the wage rates of high earners. The positive effects that people moving to
high-earning occupations have on the wages of low-earning occupations dampens the
redistributional motives of the planner. Finally, ISTC is responsible for the increased
returns on capital in 2015, which dampens the insurance motive. A higher return on
capital makes it easier to self insure and weakens the insurance role of a progressive tax
system.

The rest of the paper is organized as follows. Section 2 contains a brief survey of the
related literature. In Section 3, we discuss the stylized facts that underlie our modeling
choices. In Section 4, we describe the model. In Section 5 we estimate our aggregate
production function. Section 6 is devoted to calibrating our model. In Section 7, we

present our quantitative results on inequality and optimal taxation. Section 8 concludes.

2 Relation to the Literature

This paper relates to two main strands of literature. First, the literature investigating
the impact of technological change on inequality and, second, the literature on optimal
Ramsey taxation in incomplete markets models with heterogeneous agents.

Our work builds on the classic paper by Krusell et al. (2000). We expand their frame-
work by specifying and estimating an aggregate production function with labor inputs
based on occupations rather than the levels of education of the workforce Krusell et al.
(2000) document the impact of skill-biased technological change and capital-skill com-
plementarity on the skill premium (i.e. the college premium) and are able to explain
its evolution over time using this mechanism. They are, however, silent on other mea-
sures of inequality, such as the variance of earnings. Using our framework, we can both
explain the changes in skill premia between our four occupation groups as well as the
increase in earnings inequality in the U.S., measured as the variance of log earnings
between 1980 and 2015.

Instead of dividing the population by education level, Autor et al. (2003) makes the
argument that the most relevant interaction between technology and worker produc-
tivity comes from the types of tasks that a worker performs. They study the effect
of computerization on changes in employment by occupation categories and posit that
some occupations have a prevalence of tasks that can easily be automated and solved by

machines (routine tasks). In contrast, others involve complex problem-solving and in-



teractions (so-called non-routine tasks) which are very costly or impossible to automate.
The other key distinction of tasks is whether they are cognitive or manual. We adopt
the occupation taxonomy of Autor et al. (2003) and use the cross-walk classification table
developed by Cortes et al. (2020) to map tasks into occupation codes in order to calculate
equilibrium quantities of labor input by occupation category.

There is a growing literature classifying labor inputs by tasks and studying the inter-
action with automation technologies. Eden and Gaggl (2018) also estimate an aggregate
production function for the U.S. using the routine/non-routine paradigm and investi-
gate the welfare implications of investment-specific technological change for the welfare
of a representative agent. Our work instead uses the four task dimensions postulated
by Autor et al. (2003) and also allows for labor-augmenting technological change at the
occupation level, which will be important for our findings below showing that workers
at the bottom of the wage distribution have enjoyed wage growth relative to the center
of the distribution as a result of technological change. Other papers using a task-based
framework to study the impact of technological growth on inequality include Acemoglu
and Autor, 2011, Acemoglu and Restrepo, 2018, Moll et al., 2019. We do not follow these
studies in modeling tasks explicitly. We thus forego a more detailed characterization of
the production process in favor of the ability to measure the inputs in production more
accurately, enabling the estimation of the production technology in Section 5 below.

This paper is also related to the literature on optimal progressive Ramsey taxation in
incomplete markets models with heterogeneous agents. Due to the complexity of our
model we focus on maximizing steady state welfare, as in Conesa and Krueger (2006),
Conesa et al. (2009), Peterman (2016), Heathcote et al. (2017) Heathcote et al. (2020),
Wu (2021). In the same tradition, there is also a recent sizeable literature considering
transitions after once and forever tax changes, see e.g. Bakis et al. (2015), Kindermann
and Krueger (2022), Boar and Midrigan (2022), and a smaller literature studying optimal
dynamic taxation during a transition, see e.g. Acikgoz et al. (2022). Our contribution
is to quantify the impact of technological change on optimal tax progressivity, using a
model with occupational choice.

Some recent studies have raised the question of how the tax system should respond
to increasing inequality caused by various sources. Closest to ours are Wu (2021) and
Heathcote et al. (2020). Wu (2021) considers an ageing population, shrinking gender
wage gap, increased idiosyncratic risk, and an increase in the skill premium (modeled
with a parameter governing the returns to human capital investment). In total, these
changes lead to a slight drop in optimal tax progressivity. The effect of an increase in
the skill premium (the way he models it) on optimal progressivity is, however, almost



neutral. Heathcote et al. (2020) study the impact of technological change on optimal
progressivity in an incomplete markets model with skill choice. They also find that skill-
biased occupational choice is almost neutral with respect to optimal tax progressivity.
However, their focus is on college education and skill-biased technological change, and
there is no role for capital in production. Our paper takes an occupation-based approach
and focuses on the role of capital-occupation complementarity. In contrast to these two
studies, we find a striking drop in optimal tax progressivity due to ISTC.

Related to our work is also Ales et al. (2015) who study Mirrlesian taxation in a talent
assignment model in a static model without capital but with technical change. They find
that technical change should lead to a slightly more progressive tax system. Scheuer
and Werning (2015) study the impact of superstars on optimal Mirrlesian taxation. They
find the impact of superstars on the optimal tax system to be neutral. Guerreiro et al.
(2021), study optimal capital taxation in a model with the possibility of automation of
tasks and endogenous skill/occupation choice. Our contribution is distinct from theirs
in that we broaden the analysis to include the cognitive/manual dimensions of tasks
and focus on the progressivity of the labor income tax schedule. Like them, however,
we assume that older generations cannot change occupations, which is in line with the
evidence provided by Cortes et al. (2020), who argue that the fall in routine employment
in the U.S. has been primarily caused by declining inflow rates among younger workers.

Finally, our paper which has human capital investments modeled as occupational
choice, relates to the literature studying the impact of human capital investments on
inequality and the interaction with government policy, such as Huggett et al. (2011),
Guvenen et al. (2013), Holter (2015), Badel and Huggett (2017). In our case, we find
that reduced tax progressivity leads to higher inequality; however, this not necessarily

negative as long as households become richer on average.

3 Motivating Facts

Our analysis of earnings inequality in the U.S. labor market is carried out using the
framework proposed by Autor et al. (2003) to classify occupations. Occupations differ
with respect to: (i) whether the main tasks are more susceptible to automation (rou-
tine) or less (non-routine); and (ii) the nature of the tasks involved, i.e., whether they
are predominantly cognitive or manual. This classification system yields four mutually
exclusive occupation groups: non-routine cognitive (NRC), non-routine manual (NRC),

routine cognitive (RC) workers and routine manual (RM).



Data. We use data from the Census Bureau Current Population Survey (CPS), span-
ning the period from 1968 to 2016, to study how the quantities and prices of these
four types of labor have changed since the late 1960s. We use the Annual Social and
Economic Supplement (ASEC) from the March CPS survey available from Flood et al.
(2018), which contains data on yearly earnings and hours worked in the previous calen-
dar year. The CPS employs the US Census Bureau 2010 occupation classification system,
and we use the cross-walk table of Cortes et al. (2020) to categorize each worker into
one of the aforementioned classes. This cross-walk is based on the so-called “consen-
sus” classification scheme of Acemoglu and Autor (2011). The population of interest is
the set of non-military, non-institutionalized individuals aged 16 to 70, excluding the
self-employed and farm sector workers. See Appendix A for additional details on data
treatment. These data are used to construct time series on employment and wages by
occupation category. To calculate wage premia we use the method of Krusell et al. (2000),
as described in Appendix B.

Facts. Figure 2 shows the evolution of employment and wages for the selected occu-
pation categories. From 1968 to 2016, hours worked increased roughly five-fold in the
NRC category, three-fold in NRM, doubled in RC, and nearly stagnated in RM?.

There are three main takeaways: (i) the strong performance of NRC hours compared
to other groups and, in particular relative to RM workers; (ii) the growth of the cognitive
worker groups relative to manual; (iii) the rise of non-routine cognitive wage premium.

The central hypothesis in this paper is that one of the main drivers of the increase
in inequality since the 1980s has been the different effects that investment specific tech-
nological change has had on these four groups due to its diverse interaction with each
labor variety. This reasoning is similar to that of Krusell et al. (2000), Karabarbounis and
Neiman (2014), Acemoglu and Restrepo (2017), and Eden and Gaggl (2018).

We made this choice due to the quantitative importance of ISTC for the long-run
growth of output per hours worked in the U.S. economy, originally estimated to be 60%
in Greenwood et al. (1997), as well as its potential to disrupt labor market conditions.
Indeed, Krusell et al. (2000) used a model of capital-skill complementarity and ISTC to
study the increased skill premium (the college premium) in the U.S economy and are
able to track its evolution using this mechanism. Similarly to Acemoglu and Restrepo
(2017) and Eden and Gaggl (2018), we view the process of ISTC as akin to increased
automation of routine tasks in the economy. However, we focus on the wage premium

rather than on worker displacement in this paper.

9Population growth and increased female LFP are two drivers of the overall growth in hours.
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Figure 2: Employment and Wages by Occupation Category.

Central to investment-specific technological change are the falling prices of capital
goods, which can be interpreted as evidence of increasing productivity in the invest-
ment goods sector. As an illustration of this interpretation, consider that in the 1950s
a computer was leased for $200,000 per month, in inflation-adjusted 2010 dollars, plus
the costs of the staff and energy required to operate it.’° Today, any computer or smart-
phone equipped with microprocessors costs a fraction of that price and is able to deliver
a processing speed which is many million times that of a large-scale computer in the
1950s."" To get a sense of the scale of technological change, the CPU of a Play Station 2

19Source: http://ethw.org/Early_Popular_Computers, _1950_-_1970.
Not to mention holding a much larger quantity of information: in 1956, IBM’s 305 RAMAC disk
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is 1,500 times faster than the guidance computer on Apollo 11, while the Apple iPhone4
is 4,000 times faster.

Is there reason to believe that this source of growth has a uniform impact across labor
markets? Krusell et al. (2000) argue that this is not the case. Using aggregate U.S. data
they estimate the parameters for a CES production function where capital, skilled and
unskilled labor are embedded. They find that capital is a gross complement with skilled
labor and a gross substitute for unskilled labor. Therefore, secular growth is skill-biased
and is able to reproduce the rise in the skill premium observed in the U.S. since the
start of the 1980s, highlighting the importance of worker training for productivity and
inequality. Both Karabarbounis and Neiman (2014) and Eden and Gaggl (2018) depart
from similar hypotheses in building their frameworks.

4 A Model of Labor Market Inequality and Technological
Change

Our model is of the Bewley-Aiyagari-Hugget type:'> An incomplete markets economy
with overlapping generations of heterogeneous agents and partially uninsurable idiosyn-
cratic risk that generates both an income and a wealth distribution. Households derive
utility from consumption and leisure.

Prior to entering the labor market, households choose their occupation type based on
an idiosyncratic cost of acquiring the necessary skills to perform it. For tractability, we
assume that this decision is irreversible and mutually exclusive, and determines from
which labor market the household will draw its wage over the course of its lifetime."3
After labor market entry, households face a stream of idiosyncratic wage shocks, and
make joint decisions about consumption, savings and hours worked.

For the production side of the economy, we draw heavily on the modeling strategy
of Krusell et al. (2000) and Karabarbounis and Neiman (2014). There are three final
goods sectors in the economy: the consumption goods, structure capital goods, and
equipment capital goods sectors. This formulation allows us to express the price of

equipment goods as a function of the level of technology in that sector relative to the

could hold 5 MB of information, while the computer on which this paper was written has a total of 4.78
TB in hard drive memory.

See Bewley (2000), Aiyagari (1994), and Hugget (1993).

3Cortes et al. (2020) provide evidence of the main driver of the decline in routine employment being a
reduction in inflow rates rather than an increase in outflow rates. This is consistent with our assumption
of inability to change occupation type in the middle of working life, in spite of changing wage premia in
other occupation types.



consumption goods sector, which is the formulation that Krusell et al. (2000) adopt in
order to incorporate investment-specific technological change.

The centerpiece of the model is the production function of the intermediate input,
which uses a combination of the different occupation and capital types in order to pro-
duce final goods. We build on the production function introduced by Greenwood et al.
(1997) and extend it in order to encompass a total of four labor varieties: Non-routine
cognitive, non-routine manual, routine cognitive, and routine manual.

Technological progress, in the form of total factor productivity growth, occupation-
biased technological change, and investment-specific technological change, affects cap-
ital and labor demand and, thereby, occupation wage premia. This framework creates
a rich interaction between capital accumulation, technological change, and the wages of
different occupations and allows us to map the dynamics of these variables into earnings
inequality measures.

One key mechanism driving wage inequality in this economy is investment-specific
technological change: As equipment prices fall, firms substitute away from routine man-
ual labor to equipment capital and other types of labor which are more complementary
with capital. Shifting demand for different labor varieties coupled with limited labor
mobility produces changes in wage premia over time.

Below, we describe the household problem, the production side of the economy, and

the definition of equilibrium in more detail.

4.1 Demographics

We assume the economy is populated by a set of | = 81 overlapping generations, as
in Brinca et al. (2016). A period in the model corresponds to one year and households
begin life at age 20. Thus, j, the household’s model-age, varies between o (for age 20
households) and 8o (for age 100 households).

Prior to joining the labor market, agents must make an irreversible and mutually
exclusive occupation choice, deciding which labor market will determine their wages
over the course of their lives. Thus, a househehold i draws idiosyncratic utility, x;,, from
acquiring the necessary skills to join occupation type 0 € O = {NRC,NRM, RC,RM}.
This term can be viewed as the personal cost (or benefit, if positive) of the process of
acquiring skills to perform the tasks associated with a given occupation type, such as
the effort (or joy) from studying in the case of cognitive occupations, for example.

We assume that «;, follows a type 1 extreme value distribution, H,, with location

parameter i, and scale parameter oy, in the tradition of discrete choice modeling of

10



McFadden (1973)."* Households choose the occupation where total utility is highest:

Vio = Kip + Vo, (1)

where V, is the expected discounted lifetime utility from choosing occupation type o,
ki, is the idiosyncratic utility draw for occupation 0. Assuming oy, = 1, Vo € O, this
formulation allows us to write the probability of choosing an occupation o before «x;, is

known as:
e,”o"‘vo

- Yico et Vi’

As a result, equation 2 is also the closed form expression for the employment share of

Po (2)

occupation 0."> Other than occupation, households differ in the value of their persistent
idiosyncratic productivity shock, u;j, permanent ability, a;, and asset holdings, bi]-. Work-
ing age agents have to choose how much to work, 7;;, how much to consume, ¢;;, and
how much to save, b;j 1, to maximize utility.

After retiring at age 65 (model age 45), households face an age-dependent probability
of dying, 7(j), dying with certainty at age 100. s; = 1 — 71; defines the age-dependent
probability of surviving, so that in any given period, using a law of large numbers, the
mass of retired agents of model-age j > 45 is equal to S; = HZ{LS St_1.

Dying households leave bequests which are redistributed in a lump-sum manner
between the households that are currently alive, denoted by I We include a bequest
motive in this framework to make sure that the age distribution of wealth is empirically
plausible, as in Brinca et al. (2019).

Retired households make consumption and saving decisions and receive a retirement
benefit, ¥(a;). For simplicity, we assume that the public retirement benefit is constant
until the agent’s death and is equal to a fraction, ¥, of the average earnings of an agent
with permanent ability 4; at age j = 44 working 1/3 of its time. 1 is set to make sure
that the Social Security system breaks even in equilibrium.

™Concretely, this formulation is the same as that used for unordered multinomial models where dis-
crete choices are modeled as outcomes from an additive random utility model. See Cameron and Trivedi
(2005) for a detailed exposition.

5In order to find V, for each occupation, we calibrate and solve a version of the model where occupa-
tions are randomly assigned in such a way that we match the employment weights of each occupation type
in 1980. The employment shares used are computed from CPS data and are: pnre = 0.302, pnrv = 0.109
prc = 0.243. We then compute the expected utility for each occupation type, V,, at age 20 which we use
to solve and calibrate the version of the model with occupational choice.
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4.2 Preferences

The momentary utility function, u(ci]-, nl-j), depends on consumption, c;;, and labor sup-
ply, njj € (0,1], and is given by:*®

4
u(cit, nit) = logcij — Xlzt—n’ (3)

where 7 is the inverse Frisch elasticity of labor supply. Log utility from consumption
ensures the existence of a balanced-growth path of the economy. The utility function of
retired households has one extra term, as they gain utility from the bequest they leave

to living generations:
D(bij41) = @log(bij11). (4)

where b;; 1 is the level of liquid savings of household i. The expected discounted lifetime

utility of household i after occupational choice is given by:
L i
V =Ey | ) B [sjulcij,nyg) + (1 —s;)D(bijy1)] |, (5)
=1
where f is the discount factor and s; = 1 for j < 45.

4.3 Labor Income

Labor productivity depends on three elements which determine the amount of efficiency
units of labor each household is endowed with in each period: Age, j, permanent ability,
a;, and the idiosyncratic productivity shock, u;;, which we assume follows an AR(1)
process:

wij = puttij_1 + &, €j ~ N(0,02). (6)

Thus, household i’s wage at age j is given by:
, o 2B
wl (]’ 0’ al’ ul]) — woevo+71]+')/2] +’)/3] +al+u1]’ (7)

where 1, 72 and <3 are estimated directly from the data to capture the age profile of
wages, and 7 is set such that the age polynomial is equal to zero at age 20 in the model.
Households’ labor income also depends on the wage per efficiency unit of labor w,, 0 €
O = {NRC,NRM, RC,RM}, where o is the labor variety supplied by the household

16We assume that disutility of work depends only on working time, not on occupation type.
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and chosen at the beginning of the work life. Permanent ability is assigned at labor
market entry and has variance 0,, which depends on the occupation, in order to match
within-occupation earnings dispersion. Appendix D describes implementation of this

procedure in the numerical algorithm.

4.4 Technology

In this framework, three competitive final goods sectors exist: Consumption goods,
structure investment goods, and equipment investment goods. Each is produced by
transforming a single intermediate input using a linear production technology. All pay-
ments are made in the consumption good, which is the numeraire.

The consumption good is obtained by transforming a quantity Z.; of intermediate
input into output, which is then sold at price p. to both households and the government.

The transformation technology is:
Ci+ Gt = Zey, (8)

where Z; is the quantity of input, purchased at p,; from a representative intermediate
goods firm. Given that the consumption good is competitively produced, its price equals

the marginal cost of production:
Pt = 1= pzt. (9)

Likewise, structure investment good firms produce output with a similar technology:

Xst = Zs,t/ (10)

’

and therefore p;; = 1. The production of X,, the equipment investment good, uses the
transformation technology:

Zet
X t = _,/
“ Gt

where Z,; is the quantity of input z used in the production of the final equipment

(11)

good. 1/¢; is the level of technology used in the production of X, relative to the final
consumption good. As ¢; declines, the relative productivity in assembling the equipment
good increases. We assume that §; evolves exogenously. We obtain the price of the
equipment good from the zero profit condition:

Pet = CtPzi = Ct, (12)
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where ; = pe,t/ pc,t is interpreted as the relative price of the equipment good.

A representative intermediate goods firm produces Z.; 4+ Zs; + Z,; using a constant
returns to scale technology in capital and labor inputs, y¢ = F(Ks+, Ket, NNrC t NNRM 1/
Nrct, Nrmt), where K is structure capital and K is capital equipment. The firm
rents structure capital at rate 75, equipment at r{ and each labor variety at w,;, 0 € O.
Aggregate demand, measured in terms of the consumption good: Y; = C; + Gt + X +
¢t Xe, factor prices, and the price of the intermediate good p.; are taken as given. The

firm chooses capital and labor inputs each period in order to maximize profits:

It = pays — 15t Ksp — 1e 1 Ket — Z WotNot, (13)
0eO
subject to:
Yt =Zep+ Zsp + Zep = Ct + Gt + X p + Gt Xep = Vi (14)

This setup implies that Z.; = Ci + Gt, Zst = Xst, Zet = GiXer, and F(.) = Y; =
Ct + Gt + X5 ¢ + €t Xe r. We assume that the production function of intermediate goods is
Cobb-Douglas over structure capital and CES over the remaining inputs:*”

o(1—a)

3 o-1 3 -1 -1
Y @iZ,f + (1=} 9i | Npyyy / (15)
i=1 i=1

F(.) = AG() = AKS,

_ F1 2

P11 [ T P21 1| Pl
Zip = | 1K' + (1= ¢1)Nyre, s Zop = | 2K, 1+ (1= d2) Nygas ’

Z3; = ‘PSKe,fT +(1— (P3)NREZS,t

~ 3
p3—1 p3—1 ] p3-1
7

where Ay is total factor productivity, ¢; and ¢; are distribution parameters where | =
1,2,3, correspond to the occupation types NRC, NRM, and RC, respectively. p; is the

7Krusell et al. (2000), Karabarbounis and Neiman (2014), and Eden and Gaggl (2018) use CES pro-
duction functions where capital equipment is nested with all labor varieties except for unskilled /routine
manual labor, which is introduced in isolation. The reason for this setup is the set of symmetry restrictions
on substitution elasticities imposed by the CES functional form, as explained in Krusell et al. (2000). In
a nutshell, this nesting form allows for complementarity between capital and differentiated labor (NRC
NRM, RC) while permitting the elasticities of substitution between routine routine manual labor and other
labor varieties to be different. Our version is an extension of this framework with a finer breakdown over
labor varieties. In estimating the production function, we use the Simulated pseudo-Maximum Likelihood
Estimation (SPMLE) method proposed by Ohanian et al. (1997) which was also applied in Krusell et al.
(2000). Our application is described in the next section.
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elasticity of substitution between capital and the nested labor variety i, and ¢ is the
elasticity of substitution between each composite Z;; and routine manual labor. Com-
plementarity between the two inputs in Z;; requires that p; < o, as in Krusell et al.
(2000).

Each variety of labor input is measured in efficiency units, N, = h, 0o, Where h,
is the quantity of hours worked in the aggregate and ¢, is an efficiency index repre-
senting the latent quality per hour worked in occupation type o in period t. g, can be
interpreted as an occupation-specific technology level, due to research and development,

or as human capital accumulation.

Firm maximization implies that marginal products equal factor prices:*®
i p1—1 (pl717—p11)n7
— Ket e
WNRCt = Et@1 |1 ( NNR/Ct> +(1—¢1) [1 — ¢1]onrc, (16)
[ K p2=1 N p2=1 (p‘?lz)v
_ : ) ; 2
WNRM,t = Zt¢2 | P2 (N—et> + (1 —¢2) (%)
NRC,t NRC,
) 1
NNrRM 2
[1 = ¢ (—N ONRM, t, (17)
NRC,t
K P31 N p3—1 (;31%0
WRC,t = St @3 | P3 ‘ +1—3( )
Re 9319 (NNRC,t) (1=¢3) NNRc,t
1
N; Nz
[1— ¢3] (—N e ) ORC,t/ (18)
NRC,
N _1
wrM,t = Z¢(1 — @1 — @2 — @3) (%) ORM, ¢/ (19)
NRC,¢
K a—1 o(1—a)
For = A [N—”} AT, (20)
NRC, ¢
K p1—1 (pal:?)tf K _1
—_ 3 f1 3 r1
Ve,tZ&t[% o} [Net } +[1— 1] ) <N L ) +
NRC,t NRC,t

BMarginal products are expressed as functions of the ratios between each factor and the non-routine
cognitive labor for the purpose of constructing the solution algorithm.
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KT p2-1 N 271\ Top-1)o K _1
et 2 NRM,t | P2 et P2
’ + 11— . } 2 ( . ) +
92| 9 | NNRC £ 1= 2] | NNRC ¢ ? NNRC,t
KT p3—1 N p3—1 (piiﬂ%a % _1
et r3 RCt 3 et r3
3 | ¢3 : +11—¢3 —} 3 ( : ) , (21)
73 |9 | NNRCt 1= 3] | NNRC ¢ 9 NNRC,t
where!?
K ] u 1-on
g =A . 1—a]A!
t [NNRC,t [ 2
Capital laws of motion are given by:
Ks,t+1 - (1 - 5S)Ks,t + Xs,t/ (22)
Ke,tJrl = (1 - 5e)Ke,t + Xe,t/ (23)

where &5 and 6, are the depreciation rates of structures and equipment, respectively.

4.5 Government

The social security system is managed by the government and runs a balanced budget.
The revenues are collected from taxes on employees and on the representative firm at
rates Tss and T, respectively, and are used to pay retirement benefits, Y.

The government taxes consumption, 7, and capital income, 1}, at flat rates. The labor
income tax follows a non-linear functional form as in Benabou (2002), Heathcote et al.
(2017) and Holter et al. (2019):

ya=1—6y %, (24)

where 6y and 6, define the level and progressivity of the tax schedule, respectively. vy is

the pre-tax labor income and y, is after-tax labor income.*°

9Variable A; is defined as:

p2-1 pp—1 (p2:1)z7
K ’ 2 NNRM 02
+ @2 (sz{ - ] +[1—¢2] 4 )

NNRc,t NNRc,t
p3—1 p3—1 f()3<(7;)1> 1
L M B - p3—1)o o—1
K y 03 NRC,t 03 NRM,t 7
+§93<¢3{Ne } +[1_¢3]{N +(1— 91— 92— ¢3) N :
NRC, ¢ NRC, ¢ NRC, ¢

29See the appendix of Holter et al. (2019) for a detailed discussion of the properties of this tax function.
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Tax revenues from consumption, labor, and capital income taxes are used to finance
public consumption, G, which clears the budget constraint. Denoting social security
revenues by Rj® and the other tax revenues as T;, the government budget constraint is
defined as:

T; =G, (25)

%<ZQJZW' (26)

j>45

4.6 Asset Structure

Households hold two asset types: Structures capital, k,;;, and equipment capital, k, ;.
There is no investment-specific technological change in the steady state, i.e., §;+1 = ¢t =
¢, so we drop the time index on return rates for this exposition. Thus, the return rates

must satisfy:
1
¢

which follows from non-arbitrage: Investing in equipment capital must yield the same

[E+ (e = &) (1 — )] = 1+ (rs — 05) (1 — ), (27)

after-tax return as investing the same amount in structures. Total assets for the consumer
are defined as:
bij = Cke,ij + ks,ij, (28)

4.7 Household Problem

In any given period a household is defined by its age, j, occupation o;, asset position b;;,
permanent ability 4;, and a persistent idiosyncratic productivity shock u;;. A working-
age household chooses consumption, Cijs work hours, nij, and future asset holdings, bij+1,
to solve its problem of maximizing expected utility. The household budget constraint is
given by:

¢ij(1+ Tc) + Ckejijr1 + ksjijr1 = [+ (re — §0e) (1 — )] ke ij
[T+ (rs — d5)(1 - Tk)]ks,ij +ql' + YN, (29)

where YN is the household’s labor income after social security and labor income taxes,
and g = 1/(1+rs(1 —1¢)). Using 27, in equilibrium we can rewrite the budget constraint
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as:
cii(14T) + bijp = (b + D)1+ r(1 — )] + YV (30)

The household problem can be formulated recursively as:

V(j, bij, 0i,a;, ujj;) = max [u (cijymij) + BEu;, [V(j +1,bity1, 04,4, uz‘j+1)]]

CijMijbij 1
s.t.:
cii(14 1) + bijp1 = (bjj + D)1 +r(1 — )] + YN

YN _ ni]-w (], 0;,4a;, Ll,']') (1 - [nijw (], 0,4, Mij) ] )

njj € (0, 1], bi]' >0, biO =0 Vi, Cij > 0.

The problem of a retired household differs in three ways: There is a positive age-
dependent probability of dying, 7(j), a bequest motive D(b;j;1), and labor income is
replaced by constant retirement benefit depending on permanent ability, ®(a;). The
retired household’s problem can be written as:

V(j bij,a;) = max [“ (cij, bij1) + B = () V(G + 1, bijr, a5) + 7T(]')D(bij+1)}
ij/bij+1

s.t.:

Ci]'(l + TC) + bij+1 = (bi]' + F)[l + 1’(1 — Tk)] + ‘I’(ai)

bijz1 >0, c¢j>0.

4.8 Stationary Recursive Competitive Equilibrium

Letting ®(j, b, 0,a, u) be the measure of agents with corresponding characteristics (j, b, 0,a,u),
we define a stationary recursive competitive equilibrium as follows>:

1. Taking factor prices and initial conditions as given, the value function V(j,b,0,a, u)
and the policy functions, o(x,), ¢(j,b,0,a,u), '(j,b,0,a,u), and n(j,b,0,a,u), solve
the household’s optimization problem.

2. Markets clear:
K, + K, = /b+rdc1>,

2I'The time index is dropped from aggregate variables, given that this is characterization of the steady
state.

18



NRrM = OrRM / nrmM AP, Nrc = ORC / nrc AP,
NNRM = ONRM / nNRM AP,  NNRC = OrRM / nNrc AP,
C+ G+ 6:Ks + ¢0.K, = F(Ks, Ke, NNrC, NNrM, NRC, NRM) -

3. The prices of the production factors equal their marginal products (Equations 17-21
hold).

4. The government budget balances:

nw(j,o,a,u)

G:/Tkr(b+l")+rcc+nrl{ 1z
SS

| 2o

5. The social security system balances:

¥ g — o s / nw dd
j>45 1+ 7T \ Jj<as '

6. The assets of the deceased at the beginning of the period are uniformly distributed

among the living:

F/w(j)dCD:/(l—w(j))thD.

5 Estimating the Production Function

The production function that transforms our four labor varieties and two types of capital
into output goods is of crucial importance to our quantitative results. In this section, we
describe the stochastic specification of the production function model, the equations to
be estimated, and the results. The estimation strategy follows Krusell et al. (2000). The
parameter estimates from this section are later used to produce the baseline calibration of
the theoretical model, which we will use to run counterfactual experiments to study the
impact of technological change on earnings dispersion. The data used in the estimation
is described in Appendix B.

5.1 Stochastic Specification

The stochastic elements in our model are the unobserved technology components: (i)
the relative technological level of the investment good sector; (ii) the set of labor-specific
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efficiency indices; and (iii) the factor-neutral technological process. We assume that the
relative price of equipment (& = & /& 1) is trend stationary, and confirm this with a
Dickey-Fuller test. We assume that the labor efficiency index processes have different

linear trends for each labor variety. Defining the processes in logs we have:

e =log(er), $r =1+ 1t +ut, (31)

where {1 is a (4 x 1) vector of the log of the latent efficiency indices, iy is a (4 x 1) vector
of constants which specify the value of the indices at the beginning of the sample, ¥,
is a (4 x 1) vector of growth rates, and v; is a (4 x 1) vector of shock processes that we
assume to be multivariate normal, i.i.d. with covariance matrix Q: v; ~ N(0,Q). The
iid. assumption simplifies the identification of the factor-neutral technological change,
A;, which is described below.

5.2 Equation Specification

We use a system with two sets of equations obtained from the first order conditions of
agents in order to estimate the model: (i) the wage bills relative to the routine man-
ual labor variety; and (ii) a no-arbitrage condition between investing in equipment and

structure capital. These are defined as follows:

oo _ whro s (1, X1;6), 0 € O = {NRC,NRM, RC}, (32)
WRM,tHRM, ¢
and
F , Xp41,0
1+ [Fr, (Y141, Xe41;0) — 05 441] = E (%) (1—bery1) + K"(lpwét t+19) (33)

where 33 is obtained from equation 27, assuming that ¢; # {;4+1, and where we substi-
tuted the return rates by factor marginal productivities.

Depreciation rates are indexed by t since they change over the time (see Appendix
B). wbr,; are functions of X; and 6. X; is the vector of inputs and depreciation rates
{Ks,t, Ket, ANRC £, INRM t, BRC £, BRM. £ 05 1, Oc t }- The vector 6 is the set of parameters {«, p1, p2,
03,91, P2, 03, 91, 92, 93, %0, ¥1,S, Nw, Kep }, including the first observation of the equip-
ment capital stock, which we estimate jointly with the other parameters. 7, is the
standard deviation of the error term in the equipment price equation, which we specify
below. Like Krusell et al. (2000), we assume that there is no risk premium in equation

33, and that the tax treatment is identical between equipment and structure capital re-
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turns. Finally, we substitute the first term on the right hand side of equation 33 with
Et (&t1/8t) (1= 6et[1 — T s]) + wr, where wy is the i.i.d. forecast error and wy ~ N (0,%2).
This set of assumptions imply that A; = Y;/G(.) from equation 15.

Data for the labor inputs in hours and the hourly (nominal) wages are used to obtain
the left side of the set of equations 32. We use a measure of GDP at constant prices to
find Ay.

The construction of the structure capital stock, depreciation rates, and relative prices
is discussed on Appendix B. Given that this is a non-linear system of eight equations with
unobserved state variables, standard linear Kalman filter techniques cannot be applied
to estimate the parameter vector 6. Ohanian et al. (1997) propose a two-step version of
the SPML estimator to find 0 for this type of problem, which we detail in Appendix C.

The parameter vector 6 has dimension 36. Our sample contains 49 observations
for each equation. We reduce the number of parameters to be estimated by external
calibration, or by setting a priori restrictions. First, we impose that S be a diagonal matrix
and that the variance of the disturbances be identical for all labor types. Thus, S = 521y,
where 72 is the common innovation variance and I4 is a (4 x 4) identity matrix. Second,
we fix P40, the initial level of the latent efficiency index of routine manual workers,
which is not identified. Third, we set the income share of structures to 0.04 as in Krusell
et al. (2000). Finally, we regress the variation rate of the relative price of equipment on
a linear trend in order to calibrate the forecast error variance of the equipment price
index. We set 7, to be equal to the estimated standard deviation of the error term in the
regression &, = 0.032. This reduces the number of parameters to be estimated to 19: The
common variance of the latent processes, 175, the elasticities, o, p1, p2, p3, the production
function share parameters, ¢1, ¢2, P3, @1, P2, @3, the parameters governing the latent state
variables, except for ¢4 o, and the initial level of capital equipment, K, o.

5.3 Estimation Results and Model Fit

The model is estimated using data from 1967 to 2016 and the Simulated Pseudo Maxi-
mum Likelihood Estimation (SPMLE) procedure. Table 1 shows the resulting estimates.

Elasticity estimates for the nested occupation types are all consistent with capital-
occupation complementarity, i.e., ¢ > p;, i = 1,2,3. The estimation of these elasticities is
one of the contributions of this paper to the literature.

The most comparable estimates are provided by Eden and Gaggl (2018), who specify
a CES production function with non-routine labor nested with capital. In contrast to
our estimates of 0.5 and 2.1 for NRC and NRM labor, respectively, they estimate an
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elasticity of substitution of 1.4 for non-routine labor as a whole. For routine manual
labor, their estimate is 8.0 for routine occupations, compared to our elasticity of 5.6 for
RM. Although less comparable, Krusell et al. (2000) obtain a value of 0.67 for skilled
labor, and 1.67 for unskilled labor. For the processes of occupation-specific technology,
we estimate that only the non-routine cognitive occupations have experienced positive
growth, while routine manual labor has suffered the largest decline. We know of no

other comparable estimates in the literature.

Table 1: Elasticity Estimates

Parameter Description Value
o EOS RM 5.564
01 EOS NRC 0.497
02 EOS NRM 2.055
03 EOS RC 5.029
1 Share NRC 0.378
¢ Share RM 0.086
¢3 Share RM 0.279
1 Share composite NRC 0.160
P2 Share composite NRM 0.045
@3 Share composite RC 0.023
P01 Intercept NRC 0.859
o2 Intercept NRM 1.936
o3 Intercept RC 3.582
P11 Slope NRC 0.002
P12 Slope NRM -0.006
P13 Slope RC -0.001
P14 Slope RM -0.010
Kep Starting equipment capital 582

Figure 3 shows model fit to target moments over time. Figure 3a displays aggregate
ex post return rates of equipment and structures implied by our model, which are zero
in expectation as per our assumption. They have a 4% average, as in Krusell et al. (2000),
although a slightly increasing trend from the early 2000s onward.

Figure 3b plots wage bill ratios implied by the model, as specified by the set of
equations (32), and the data. Model predictions closely track the data. The NRC wage
bill shoots up from close to on par with routine manual labor in 1968 to 3.5 in 2015.
In contrast, NRM and RC wage bills grow slowly upwards relative to that of routine
manual occupations, which is explained by both their lower level of complementarity
with equipment capital as well as their declining level of latent efficiency.
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Note: The estimates presented cover the period from 1968 to 2015 as we lose both the first and the
last period of the sample in order to estimate the model. In Figure 3d, total factor productivity is
normalized to 1 in 1968. Construction of the measures is described in Appendix B.

Figure 3: Empirical Model Fit to Targeted and Non-Targeted Moments.

Figure 3c shows the model fit to the wage premia of each occupation relative to RM.
As in the previous figure, the dashed lines indicate the data and the solid lines the model
predictions. In all cases, the model tracks the data closely. This is important given that
our goal is to use the estimated parameters to calibrate the theoretical model, and the
key force driving earnings dispersion is the change in wage premia across groups.

Finally, Figure 3d displays our estimate of total factor productivity in the U.S. for this
period. From 1968 to 2008, TFP increased by almost 30% and then fell to around 20%
in the following years. For comparison, the estimate of total factor productivity by the
Penn World Table increases by 30% from 1968 to 2015 (FRED).

In conclusion, we provide new estimates for the elasticities of substitution between

equipment capital and the occupation categories defined in Autor et al. (2003), which
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have been extensively used in the literature to discuss the impact of technological change
and the future of labor markets. We find that our model is broadly compatible with the
data, especially with respect to the occupation wage premia, which is crucial for ensuring
that the predictions of the theoretical model are consistent with the data. We now turn
to the calibration of the theoretical model, which uses the estimates obtained from this
section to parameterize the production side of the economy.

6 Calibration

This section describes the calibration of the baseline model to resemble the U.S. economy
in 1980. The parameters are either set externally (i.e., without solving the full model)
to match their empirical counterparts, or estimated by simulated method of moments

(SMM). Table 2 lists parameter values and sources.

6.1 Externally Calibrated Parameters

Preferences We set the inverse of the Frisch elasticity of labor supply, 7, to 3 which is a
standard value in the literature.

Labor productivity The wage profile through the life cycle (see equation 7) is calibrated
directly from the data. We run the following regression, using Panel of Study of Income
Dynamics (PSID) data:**

In(wyt) = a; + v1j + 12> + v3i° + €ir- (34)

where j is the age of household i’s reference person and 4; is a household-specific ef-
fect. We then use the residuals of the equation to estimate the parameters governing
the idiosyncratic shock, p and o.. The scale parameters of the cost of choosing an oc-
cupation (UNRcC, UNRM, URC, HrRM) are set such that they match the employment shares
observed in 1980. The procedure is explained in Section 4. The location parameter, gy,

is normalized to o.

Technology Equipment and structure depreciation rates are set to match those used
in the estimation of the empirical model for 1980, and described in Appendix B. The
production function is calibrated using the parameters estimated from the empirical
model. The efficiency indices of each occupation are set to match those of of the empirical

22PSID data is described in section A of the Appendix.
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Table 2: Externally Calibrated Parameters

Description Parameter Value Source
Preferences

Inverse Frisch elasticity n 3.000 Assumption
Labor productivity

Parameter 1 age profile of wages 7 0.265 PSID
Parameter 2 age profile of wages 72 -0.005 PSID
Parameter 3 age profile of wages 73 0.000 PSID
Variance of idiosyncratic risk Oc 0.307 PSID
Persistence idiosyncratic risk Ou 0.335 PSID
Location of the cost of choosing NRC UNRC -5.712 CPS
Location of the cost of choosing NRM HNRM 4.441 CPS
Location of the cost of choosing RC URC 0.379 CPS
Location of the cost of choosing RM HURM 0.000 Assumption
Technology

Equipment depreciation rate e 0.106 Section 5
Structures depreciation rate Js 0.026 Section 5
Share structures « 0.040 Section 5
Share NRC 1 0.378 Section 5
Share NRM ¢ 0.086 Section 5
Share RC ¢3 0.279 Section 5
Share composite NRC 1 0.160 Section 5

Share composite NRM 2 0.045 Section 5

Share composite RC P3 0.023 Section 5

EOS NRC 01 0.497 Section 5

EOS NRM 02 2.055 Section 5

EOS RC 03 5.029 Section 5

EOS RM o 5.564 Section 5
Latent efficiency NRC 01 2.734 Section 5
Latent efficiency NRM 02 4.955 Section 5
Latent efficiency RC 03 34.662 Section 5
Latent efficiency RM 04 0.378 Section 5

Total factor productivity A 16.728 Section 5
Relative price of investment goods ¢ 1.000 Assumption
Government and SS

Consumption tax rate Tc 0.054 Mendoza et al. (1994)
Capital income tax rate T 0.469 Mendoza et al. (1994)
Tax scale parameter 0o 0.850 Wu (2020)

Tax progressivity parameter 01 0.187 Wu (2020)

SS tax employees Tss 0.061  Social Security Bulletin, July 1981
SS tax employers Tos 0.061  Social Security Bulletin, July 1981
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model in 1980. The level of total factor productivity is set to the estimate from the
empirical model for 1980.

Government We set 0y and 60; to the estimates obtained by Wu (2021) for 1980. For the
social security rates we assume no progressivity. Both social security tax rates, employer
and employee, are set to 0.06, the average rate in 1980. Finally, we set 7, and 7} to match
the values obtained in Mendoza et al. (1994) for 1980, i.e, 7. = 0.05, 7 = 0.47.

6.2 Endogenously Calibrated Parameters

To calibrate the parameters for which we do not have direct empirical counterparts, {5,
X, ¢, ONRC, ONRM, ORC, OrRM}, We use a simulated method of moments approach, for
which we construct the following loss function:

L(6) = ||Mu — My, (35)

where 0 is the vector of parameters to be estimated and M,, and M, the moments in the
model and in 1980, respectively. Our estimate, §*, is obtained by minimizing (35).

We use the ratio between average wealth of 65 and older to the average wealth in the
economy as the target for the utility of bequests parameter. The discount factor is set by
targeting the capital-to-output ratio. The capital stock is obtained from the estimation
of the empirical model of section 5. Disutility from work targets average hours worked,
and we calibrate the occupation-specific variances of ability to target the variance of log
earnings observed in the data for each occupation. Calibration fit is presented on Table

3. Table 4 presents the parameters calibrated internally.

Table 3: Calibration Fit

Data moment Description Source Model Data
65-on/all Average wealth of households 65 and over US Census Bureau 1.310 1.311
K/Y Capital to output BEA and CPS 1.412 1.412
n Fraction of hours worked BEA 1/3 1/3

Varln(engrc)  Variance of log earnings (NRC) CPS 0.408  0.409
Varln(enry) — Variance of log earnings (NRM) CPSs 0.410  0.406
Var In(egrc Variance of log earnings (RC) CPS 0.409  0.410
Var In(egrm ) Variance of log earnings (RM) CPS 0.305  0.304
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Table 4: Parameters Calibrated Internally

Parameter Value Description

) 9.993  Bequest utility

B 0.961  Discount factor

X 66.981 Disutility of work

02 NRC 0.519  Variance of ability NRC
02 NRM 0.515 Variance of ability NRM
04 RC 0.517  Variance of ability RC
04 RM 0.385  Variance of ability RM

7 Quantitative Results

In this section we use our model, calibrated to resemble the U.S. economy in 1980, to an-
swer the two main questions raised in the introduction: To what extent does technologi-
cal change explain the observed increase in earnings inequality? How does technological
change affect the optimal progressivity of the tax system?

7.1 The Sources of Growing Earnings Inequality

The main experiment conducted in this section is to recalibrate the model to reflect
changes in technology and taxes between 1980 and 2015%3. We then decompose the
variation in our earnings inequality measure (the variance of log earnings) between the
two steady states to identify the role of investment-specific technological change (ISTC),
latent occupation-biased technological change (LAT), and TFP growth.

We also compare the magnitude of these technological sources of variation in earn-
ings dispersion to others, such as the observed changes in the progressivity of the tax
system. The decompositions are carried out by setting the relevant parameters to their
1980 level and comparing the resulting change in earnings dispersion to its 2015 value
as calculated in the baseline experiment.

Parameters related to tastes, individual productivity processes and the production
function are kept constant between steady states: The age profile of wages (71, 2, 73),
the idiosyncratic productivity process (o, and o), preferences (A, 1, B), ability variance
parameters (0,,, 0 € O), and production function shares and elasticities. The parameters
changed from 1980 to 2015 are listed in Table 5. The main shifts are in technology

23There are many things that have potentially changed between 1980 and 2015, and that could cause
higher or lower inequality (for example ageing population, shrinking gender wage gap, and changes in
idiosyncratic risk, see Wu (2021)) but we focus for now on these two channels.
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parameters, idiosyncratic occupation costs, and tax rates.

Table 5: Parameter Changes 1980-2015

Parameter Description 1980 New SS
T Consumption tax 0.054 0.050
T Capital income tax 0.469 0.360
Tss Employee SS tax 0.061 0.077
Tss Employer SS tax 0.061  0.077
0o Tax scale 0.850  0.922
01 Tax progressivity 0.187  0.137
¢ Investment price 1.000 0.405
01 Latent efficiency NRC 2734  2.986
02 Latent efficiency NRM 4.955  4.051
03 Latent efficiency RC 34.662  33.907
04 Latent efficiency RM 0.378 0.267
IUNRC NRC cost location parameter -5.713  -7.618
HUNRM NRM cost location parameter  4.441 3.938
URC RC cost location parameter 0.379  -2.332

In the new steady state, we set the relative price of investment goods to 40% of the
initial price index, which mimics the fall measured in the data between 1980 and 2015.
Labor efficiency indices are set to their 2015 levels, using the functional forms of those
processes estimated in section 5. Likewise, TFP is set to equal the estimated level in
2015. The location parameters of the idiosyncratic cost distributions are set such that
they match the occupation employment shares observed in 2015.

The scale and the progressivity parameters of the labor income tax schedule are set
to match the estimates of Wu (2021). The Social Security tax rates are those described
in Brinca et al. (2016) for the U.S. economy. Both the consumption tax and the capital
income tax are calculated using the method in Mendoza et al. (1994).

Table 6 contains the fit of the model moments to some untargeted data moments in
1980 and 2015. In the first section of the table, we compare relative input quantities
from the theoretical model to those obtained from estimating the empirical model of
the production function in section 5. The relative inputs quantities are fairly close to
our estimates, with the exception of the growth of equipment capital between 1980 and
2015, which the theoretical model substantially underestimates relative to the empirical
model. In other words, the model is unable to generate a sufficiently large rise in savings

compared to our empirical estimates.**

24This is likely due to the fact that the U.S. is turning into a large open economy. This means that
the stock of capital has grown not only via increased domestic savings but also through foreign direct
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Table 6: Theoretical Model Fit

1980 2015

Variable Model Data Model Data
Relative input quantities

K¢/ NNRC 6.27 7.80 16.70 39.14
Nnrm/ NNre 0.66 055 049 043
Nrc/ NNRC 10.61 9.10 574  5.66
Nrm/ NNRC 0.16 0.16  0.05 0.05
Wage growth

NRC wage 1.00 100 138  1.28
NRM wage 1.00 1.00 1.11  1.11
RC wage 1.00 1.00  1.25 1.14
RM wage 1.00 1.00 1.00 0.93
Wage premia

NRC 135 1.31  1.83 1.80
NRM 0.60 0.63 0.66 0.74
RC 091 088 1.14 1.09

Variance of log earnings ~ 0.43  0.45  0.57  0.57

Note: The first section of the table displays the relative input quantities. The second section
displays wage per efficiency unit by occupation (model definition) and wages per hour at
constant 1968 prices by occupation (data definition). All the prices are normalized to 1
in 1980. The third section shows the wage premia calculated as the ratio between the
marginal productivities of labor in each occupation category relative to RM in the case of
the model. The empirical counterpart of the model wage premia is described in Appendix
B.

The second section shows the wage changes by occupation between both steady
states. The model slightly overestimates wage growth for all occupations, with the excep-
tion of NRM. However, as can be seen in the third section of the table, wage premia are
very close to the data in both years, which is key in terms of accounting for the change
in earnings dispersion. The bottom line shows the variance of log earnings which is the
centrepiece of our analysis. The total variance of log earnings grows 27% from 1980 to
2015 in the data and 33% in the model, implying that the model slightly overshoots the

growth in earnings inequality.

investment (FDI). According to the BEA, the stock of FDI in the U.S. increased 40 fold between 1980 and
2015 from 83$ billion to 3.4$ trillion (Source: BEA annual data on FDI position). See also Chakraborty
et al. (2017) for the growth in cross-border lending to U.S. firms over the period.
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Note: The bar denoted “Observed” indicates the change in the indicator recorded in the data between
1980 and 2015. The data used is from the CPS and is described in section 3. “Baseline” indicates the
change predicted in the theoretical model from 1980 to 2015. Each of the remaining bars indicate the
change in the model statistics resulting from keeping the corresponding parameters at their 1980 levels.
“Emp” represents the impact of keeping the location parameter of the distributions of idiosyncratic costs
of entering a given occupation at their 1980. “A” is total factor productivity. “LAT” is the set of occupation-
specific efficiency indices.

Figure 4: Decomposition of the Change in Earnings Inequality from 1980 to 2015.

To understand the drivers of the change in aggregate earnings inequality, we de-
compose the model predicted variation in labor market dispersion measures. This is
achieved by setting each set of parameters of interest to their 1980 levels while keeping
the remaining parameters at their 2015 level. We then compare the resulting change to
the variation produced by the baseline experiment.

Figure 4 illustrates these exercises by displaying the response of labor income disper-
sion measures to the set of parameter shifts presented in Table 5. The first bar in each
panel indicates the observed change in that measure, while the second bar indicates the
change predicted by the model as a result of the baseline parameter shifts shown in Table
5.

Figure 4a, in the top left panel, shows how the model fares in generating a shift
in pre-tax earnings inequality comparable to the one observed in the data. As previ-
ously mentioned, the model prediction slightly overshoots the increase in the variation
of earnings inequality observed in the data (33% in the model but only 27% in the data).
However, this confirms that our framework is successful in predicting a change in labor
market inequality which is comparable in magnitude to what we observe in the data.

The drop in the relative price of investment, ¢, is the single most important source of
the increase in pre-tax earnings inequality. If this drop had not taken place, our frame-
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work predicts a rise in earnings dispersion of only 10%. Thus, investment-specific tech-
nological change alone accounts for two thirds of the model-predicted increase in earn-
ings dispersion. This follows from the increased dispersion of between-group wages,
resulting from the complementarity effect between occupations and equipment capital.

Latent occupation-biased technological change is next in terms of importance: Keep-
ing the occupation-specific efficiency indices at their 1980 levels generates only a 15%
increase in pre-tax earnings dispersion, half of the total change predicted by the model.
This results from a lower increase in the NRC wage premium in particular. It only rises
by 18 p.p.

Taken together, ISTC and LAT fully account for the increase in pre-tax earnings dis-
persion. Keeping both sets of parameters at their 1980 values yields a reduction in in
wage variance and eliminates the role of the NRC wage premium in driving the change
in inequality.

In contrast, other sources of variation in the variance of pre-tax log-earnings are much
less relevant. The reduction in tax progressivity had a positive but comparatively much
smaller effect. Changes in the costs of acquiring the skills necessary to join each occu-
pation, while having impact on the changes in employment shares (Figure 5) produced
only a small increase in earnings inequality.

Figures 4b and 5 show how relative prices and quantities of labor by occupation
respond to the experiments conducted. This enables us to understand the direction of
mechanisms and their strength. With respect to prices, there are two competing forces:
On the one hand, the increase in the NRM wage premium reduces earnings inequality,
all else equal, given that it starts out in negative territory in 1980 and increases 6 p.p.
(10 p.p. in the data). In other words, technological growth narrows the gap between the
wage of NRM occupations, which lie at the bottom of the wage distribution, and RM
occupations. On the other hand, the wage premia of NRC and RC occupations increase
relative to RM occupations. In particular, the NRC wage premium increases 50 p.p., and
stands as one of the main sources of increased earnings dispersion in this model.

With respect to employment shares, the main takeaway is that technological change
generates an increase in the weight of non-routine occupations in total employment.
Without occupation-biased technological change and ISTC, the model predicts that the
share of NRC workers would actually drop in 2015 with respect to 1980, and the share
of NRM would remain unchanged.

In summary, technological change (and ISTC in particular) is able to generate an
increase in pre-tax earnings inequality which is comparable to the one observed in the

data. At first glance, this would imply a strengthening of the case for an increase in the
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Figure 5: Decomposition of Variation in Employment Shares by Occupation Type from
1980 to 2015.

progressivity of the labor income tax system.

In contrast, according to Wu (2021), the U.S. tax system was less progressive in 2015
than in 1980. Moreover, below we show that optimal progressivity dropped during that
period. In the next two subsections we study optimal progressivity in 1980 and 2015 and
discuss how technological change has affected it.

7.2 Optimal Tax Progressivity in 1980

In this subsection we examine the model-implied welfare function with respect to the
progressivity of the labor income tax system, 6;. We decompose the welfare changes

into the contributions from efficiency, redistribution and insurance (a 1a Flodén, 2001),
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and we study the welfare changes for the different occupations. Our main finding is that
optimal progressivity is somewhat lower than the estimated progressivity of the U.S.
labor income tax system in 1980 (0.15 vs. 0.19). Nonetheless, the model-implied gains
from moving to the optimal level of 8; are very low at 0.06% in consumption equivalent
variation.

We focus on a tax experiment where we keep the level of government spending exoge-
nously fixed and focus on finding the most efficient way to cover the current spending
level. This has the advantage that we do not have to make assumptions about the utility
from government spending and has been a tradition in much of the literature on optimal
taxation in Aiyagari-type OLG models?*>. For a given level of tax progressivity, 61, we
adjust the tax level, 8y, such that the government is able to raise enough tax revenue to
cover the level of government expenditure, G, in the initial steady state. Taxes on capital
and consumption and social security taxes are kept constant in our experiment. Given
the complexity of our model?®, we abstract from studying transitions and focus for now
on steady state welfare, similar to Heathcote et al. (2020), Wu (2021) and others.

To measure consumer welfare, we use the utilitarian social welfare criterion and max-
imize the expected lifetime utility of a household who is yet to enter the labor market
in a steady state.”” In a nutshell, the welfare gain from choosing a progressivity level
08 3 0, can be broken down into three elements: (i) the gain from reducing uncertainty
that agents face (i.e. insurance), (ii) the gain from reducing inequality in average lifetime
marginal utilities of consumption and leisure (i.e. redistribution), and (iii) the impact
that progressivity has on the overall levels of consumption and leisure via the incentive
to work and invest (i.e. efficiency). Figure 6 shows the results of our analysis.

The left panel of Figure 6 plots the social welfare function for 1980 (the solid blue
line). The model-implied optimal progressivity is 0.15, below the estimate of actual
progressivity in 1980 of 0.19 by Wu (2021). Our estimate of optimal progressivity for
1980 is close to but below that of Heathcote et al. (2020), who put it at 0.18. There are
several differences between our models that could lead to differences®®. As we will see
in Section 7.3 below, these differences become much more striking in 2015.

The low total welfare gain from moving to 6; = 0.15 masks large countervailing
movements in the contributions from different effects which form the trade-offs faced

25See e.g. Erosa and Gervais (2002), Conesa and Krueger (2006), Peterman (2016).

26We do for example have to solve for five different prices to compute equilibrium.

*7See Appendix E for a definition of the welfare criterion and an exposition of how to decompose it
into the contributions from different effects (efficiency, redistribution and insurance) in the case of our
framework.

2We do for example have four occupations and capital-occupation complementarity. They have cross-
sectional variation in the disutility of labor, which we don't.
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Note: The left panel plots social welfare as a function of the progressivity parameter, 61, for the 1980 cali-
bration. Social welfare is measured as the consumption equivalent variation required for agents entering
the labor market to be indifferent between the baseline policy and the new one. The vertical lines indicate
current and optimal progressivity levels. 6] indicates optimal progressivity according to the model. The
right panel shows the social welfare functions for households starting their life in the indicated occupation
categories in each year. In this case, welfare is the expected lifetime utility of agents once they have chosen
an occupation but before they know a; (ability) and €;; (starting level of wage risk).

Figure 6: Social Welfare and Tax Progressivity in 1980

by the policymaker. On the one hand, a reduction of 8; hampers the effectiveness of the
labor income tax system as a mechanism to reduce both the uncertainty faced by the
agents and the inequality between them. On the other hand, it increases the incentive to
exert work effort*?, to save, and to choose a higher paying occupation (this also increases
the marginal productivity in lower paying professions). Figure 7 shows the comparative
statics of output, wages and employment shares with respect to progressivity in 198o.
We look at the positive and negative effects of a reduction in progressivity in turn.

On the plus side, reducing 6; to 0.15 increases aggregate saving and effort by reducing
the marginal tax rate on high wage earners (in fact most wage earners3°). This raises the
level of output per capita by 2% (Figure 7a). The net effect on wages depends on two
factors: (i) the direct effect of increased saving and capital on the marginal productivity
of each occupation, and (ii) how agents will chose their occupation.

Figures 7c and 7d show these channels at work in equilibrium: Reducing progressiv-

ity increases the attractiveness of higher paid occupations which, everything else equal,

29For a given average tax rate, a larger 67 leads to a higher marginal tax rate and lower optimal choice
of hours, see Holter et al. (2019)

3%Holter et al. (2019) show that with this tax function only very low earners will get an increase in their
marginal tax rate when progressivity falls. The average tax rate will, however, increase for low-earners.
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Figure 7: Comparative Statics with Respect to Progressivity in 1980.

increases selection into these occupations. In our case, the highest paid workers are, on
average, in non-routine cognitive occupations. Therefore, the share of employment in
NRC occupations expands as 0; contracts. This inflow of employment into NRC raises
the marginal productivities of other occupations and, thus, has a positive effect on their
wages. Reducing 60; to its optimal value implies a 0.3% drop in NRC wages in equilib-
rium.

However, the interests of the individuals in a given occupation do not necessarily
coincide. This is most obvious for agents with a medium to low cost of acquiring NRC
training. These individuals benefit from an increase in progressivity, given that it dis-
courages agents with higher cost of NRC training from joining their occupation, reduces
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NRC labor input, and raises their marginal productivity and wages. This is the mech-
anism that explains why, in Figure 6b, agents who continue to chose NRC occupations
when progressivity go up prefer, on average, a high level of progressivity despite being
at the top of the wage distribution.3' Note that there is no selection effect in terms of the
distribution of agents in the profession with respect to earnings potential, when progres-
sivity goes up. This is because the decision to join is taken only based on the training
cost, and the occupation-specific ability has not yet been realized.

The same (reverse) logic applies to agents in the occupations at the bottom of the
wage distribution. While they may benefit from an increase in the tax system’s progres-
sivity, it also increases the attractiveness of joining their occupation, all else equal—for
example, non-routine manual occupations, which earn the lowest wages in the economy,
on average. A drop in progressivity to the optimal value increases their wages by 1.5%
and reduces their employment share by 0.4%. The effect on NRM wages is so strong that
it starts to revert the net welfare loss to shallow levels of progressivity, as the scarcity of
NRM workers implies that their wage increases significantly.

For middle wage earners, in RC and RM occupations, wages increase by 0.6% and
0.3% and the employment shares drop by 0.3 p.p. and 0.4 p.p., respectively. In the
end the positive effects of increased output and wages for the lower-paid occupations
dominate the negative effects. On the minus side, lowering progressivity reduces the in-
surance against idisoyncratic shocks by increasing the variance of after tax labor income.
It also reduces the ability of the tax system to reduce inequality between households.

In the end, the positive effects on output and wages from setting 6; = 0.15 exceed the
negative effects from greater inequality and lower insurance against uncertainty, but just
barely. At the heart of the trade-off that determines optimal progressivity lies occupa-
tional choice. Whereas progressivity in most of the previous literature only affected the
intensive margin of the labor choice (either through hours worked or continuous skill
choice), it now affects the extensive margin via the choice of occupation, which makes
top-wage earners ambivalent as to their preference of progressivity of the tax system. In

the next subsection, we see how these forces are exacerbated by technological change.

7.3 The Impact of Technological Change on Optimal Tax Progressivity

In this section we answer the second main questions in our paper: How did the tech-

nological transformation that took place between 1980 and 2015 affect optimal tax pro-

31This is the same mechanism that underlies the creation of professional guilds. One wishes to limit
entry to the profession.
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gressivity? To answer this, we evaluate optimal progressivity in 2015 and then investi-
gate how each source of technological change, investment specific technological change
(ISTC), occupation-specific efficiency (LAT), and TFP affect our answer.

We find a signigicant drop in optimal tax progressivity, 61, from 0.15 to 0.05 between
1980 and 2015. The welfare gain from moving to the optimal policy in 2015 is 1.4% in
consumption equivalent variation for unborn agents, whereas in 1980 it was only 0.06%.
Technological change plays a major role in reducing optimal progressivity, and in partic-
ular, the single most important factor is ISTC. We begin by discussing the implications
of changes in each source of technological change for aggregate variables. Then, we
conduct a welfare analysis for 2015 and disentangle the drivers of the fall in optimal tax
progressivity.

Table 7: Impact of Technological Change on Quantities and Prices

2015 No ISTC 1980 LAT 1980 TFP No tech A

Output per capita 1.39 1.08 1.35 1.23 0.95
Capital to output 4.96 0.90 4.57 4.53 0.78
Interest rate (post-tax) 0.05 0.03 0.05 0.05 0.03
NRC wage 1.38 1.04 1.36 1.22 0.95
NRM wage 1.11 0.93 1.23 0.99 0.94
RC wage 1.25 1.05 1.30 1.12 1.00
RM wage 1.00 0.85 1.20 0.90 0.93

Note: The table shows the equilibrium impact of technological change on quantities and
prices in the model. “No ISTC’, “1980 LAT’, “1980 TFP’ denote the values of aggregate
variables when we, respectively, set investment prices at the 1980 value, the occupation-
specific efficiency indices at 1980 values and TFP at its 1980 level, while keeping other
parameters at their 2015 values. “No tech” shows the impact of simulataneously removing
all sources of technological change. All variable (except the interest rate) are normalized
to 1 in 1980.

Table 5 displays the parameter changes that mimic the move to the 2015 calibration,
and Table 7 displays how removing each source of technological change affects output
per capita, capital, and prices. The main takeaway from Table 7 is that ISTC had the most
significant impact on aggregate variables out of all sources of technological change. First,
it accounts for around 70% of output per capita growth compared to a scenario where
there is no tech growth between 1980 and 2015, by making investment in equipment
capital more attractive. This is reflected in a higher post-tax return rate when compared
with all other scenarios. Second, it is responsible for between 8o to 100% of the growth

in the hourly wages in all occupations compared with the scenario where there is no
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technological change.

Latent occupation-biased technological change (LAT) has a positive but very small
impact on GDP per capita and capital. However, it has a negative impact on the wage
rate of all occupations except for NRC. This follows from the results of the production
function estimation and the equilibrium occupation shares resulting from the changes
in occupation specific productivities. More workers end up choosing the higher paying
occupations, thereby reducing their wage rates.

Finally, TFP has a large positive impact on GDP per capita, accounting for about
30% of its growth.3* It is responsible for between 40 to 100% of the wage growth by
occupation relative to the no tech growth scenario.

In summary, technological change produced a significant increase in the level of out-
put per capita, the returns to investment (interest rates), and wages. However, as we
argued in section 7.1 it also generated an increase in labor market inequality, with the
NRC wages growing more than those of other occupations. Clearly, this affects the
trade-offs between efficiency, inequality and insurance that underlies the determination

of optimal tax progressivity. Figure 8 displays the welfare analysis.
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Note: The top left panel plots social welfare as a function of the progressivity parameter, 61, for 2015, under
the baseline calibration. Social welfare is measured as the consumption equivalent variation required for
agents entering the labor market to be indifferent between the baseline policy and the new one. The vertical
lines indicate current and optimal progressivity levels. 8] indicates optimal progressivity according to the
model. The right panel shows the social welfare functions for households starting their life in the indicated
occupation categories in each year. In this case, welfare is the expected lifetime utility of agents once they
have chosen an occupation but before they know a; (ability) and €;; (starting level of wage risk).

Figure 8: Optimal Progressivity in 2015, for all and Across Occupations

32The decompositions need not add to 100%, as they interact.
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Wu (2021) estimates that the actual progressivity in the U.S. tax system declined from
0.19 to 0.14 between 1980 and 2015. He finds that changes in in economic conditions can
explain about 62% of this change33, and argues that the rest could be due to the gov-
ernment shifting its welfare weights towards high-ability households. In our framework
we do, however, predict that optimal progressivity dropped from o.15 in 1980 to 0.05 in
2015, without changing welfare weights.

What lead to this remarkable two-thirds drop in optimal progressivity? How do the
different sources of technological transformation contribute to this shift in optimal pro-
gressivity, and how do they affect the trade-offs faced by the policymaker? To answer
these questions, we use our decomposition of the welfare function into the level, inequal-
ity and insurance effects and study the impact of each source of technological change
(Figures 10 and 11). In a nutshell, we find that ISTC is the main driver of the results.

The trade-off between efficiency and redistribution/insurance is now more signifi-
cantly dominated by the efficiency side (Figures 8a and 11). This is ultimately a quanti-
tative outcome due to the estimated production function and changes in technology over
time. However, it is due to three main reasons reasons: (i) There is now much more cap-
ital, making NRC workers very productive. Getting more workers to choose NRC has a
stronger positive impact on output, the level channel. (ii) The higher equilibrium return
rate on capital given its high productivity. This implies that self-insurance is easier and
the welfare gains from improving risk-sharing through more progressive taxation are
less significant, which reduces the importance of the uncertainty channel relative to 198o.
(iii) The effect of capital accumulation and inflow of workers to NRC professions during
the 1980-2015 period on the marginal productivities and employment shares in the lower
paid professions is such that their wage rates increase substantially. This dampens the
inequality channel.

There is on the one hand still a positve welfare effect from reducing inequality
through progressivity. Because of capital-occupation complementarity the wages of dif-
ferent occupations will rise by different amounts in response to an increase in capital
equipment due to larger savings, leading to rising dispersion in marginal utilities of
consumption and leisure, which negatively affect the inequality channel. On the other
hand, this channel is flattened, because employment shares change in equilibrium as
agents select different occupations in response to variation in relative wages and post-

tax earnings (reason iii). For example, a reduction in 6; will make high wage earners

33An ageing population and shrinking gender wage gap calls for less progressive taxes, increased
idiosyncratic risk calls for more progressive taxes, and an increase in the skill premium (modeled with a
parameter governing the returns to human capital investment) is about neutral with respect to optimal
tax progressivity.
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Figure 9: Comparative Statics of Progressivity in 2015.

better-off by increasing after-tax earnings. However, it will have a negative effect on
their wages by making their occupation more attractive to work in via both the inten-
sive and the extensive margins. Figure 9 shows how quantities and prices respond to
61 in equilibrium. Our framework predicts that the net effect of reducing 6; to o0.05 is
to significantly increase the wages of all occupations (NRM: 5.8%; RC: 4.8%; RM: 5.1%)
except for NRC (-6.7%). The NRC occupation experiences an increase in its share of total
employment (5.1 p.p.), while all others experience a drop (NRM: -1.4 p.p.; RC: -1.4 p.p.;
RM: -2.3 p.p.). In conclusion, the positive impact of a reduction in progressivity on the
after-tax earnings of NRC occupations, which are the highest-paying, make them more
attractive and this offsets the occupation-capital complementarity effect embeded in the
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production function.

The relative strength of these competing mechanisms explains the preferences for
optimal progressivity by occupation displayed in Figure 8b. Are the agents in NRC
occupations partial to a reduction in progressivity (conditional on still choosing NRC)?
Strikingly, the answer is that they are less keen on that policy than the workers in the
lower-paid occupations. The reason is the effect that a lower progressivity policy has on
occupation selection: Lowering the tax rate on high wage earners increases their after-
tax earnings, but leads to an inflow of workers and actually a reduction in their hourly
post tax wages at some point3*. As progressivity drops, the share of NRC workers in
the economy increase, as well as their weight in determining the optimal redistributive
policy.

In contrast, lower paid occupations would unanimously benefit from a flat tax rate.
On the one hand, there is no insurance against uncertainty. However, as previously
discussed, the higher return rate on savings relative to 1980 change dampens this chan-
nel, given that insurance is cheaper. The inequality channel is also negatively affected,
but has a low weight, given that a large fraction of wage inequality in this economy is
endogenous and depends on individuals optimally choosing their occupation. On the
other hand, a flat tax rate leads to a surge in savings, in the capital-to-output ratio, and
an outflow of workers to higher-paid occupations. Both of these mechanisms have the
unambiguous impact of increasing the wages of all occupations except for the NRC,
whose members cannot move to a higher-paid occupation.

These results stand in stark contrast to those obtained by Heathcote et al. (2020), who
find an optimal level of 6; = 0.16 in 2016. Part of the reason for this is the heterogeneous
impact of savings and technological change on the marginal productivities of each occu-
pation, which is absent from their model. Rather, in their framework agents choose their
level of skills, which are imperfect substitutes in production but have a single constant
elasticity of substitution, and there is no role for capital in production.

Figure 10 confirms our interpretation of ISTC as the main driver of these changes.
The solid blue line is the welfare function in 2015, where the maximum is 0.05. The
dashed red line indicates the calibration for 2015 with equipment investment prices at
their 1980 level. Here, the maximum is 0.18, close to the value estimated for 1980 and the
optimal 6; estimated by Heathcote et al. (2020). As discussed earlier, this equilibrium
displays lower return rates, and lower sensitivity of wages, employment shares, and
output per capita to progressivity. As a result, the optimal progressivity is much higher.

The purple dotted line indicates the welfare function in an economy calibrated to

34That point being 6; = 0.11.
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where occupation-specific efficiency indices have been kept at their 1980 levels. The grey dash-dotted
line denoted “1980 TFP” shows the welfare function with TFP at 1980 levels. 6* indicates optimal
progressivity according to the model for each experiment.

Figure 10: Optimal Progressivity in 2015 and the Role of Technological Change.

2015 with occupation-specific efficiency indices at their 1980 levels. In this case, earn-
ings inequality is lower, given that the NRC occupation does not experience as large an
increase in wages as in the 2015 calibration. As a result, the inequality channel is even
weaker, which drives optimal progressivity further to the left. Finally, the dash-dotted
grey line plots the welfare function when keeping TFP at its 1980 value. As mentioned
before, TFP growth raises wages and output. It does, however, have little effect on rel-
ative wages, see Table 7. When everyone becomes poorer this, however, leads to less
savings and capital, which moves optimal progressivity to the left.

Figure 11 confirms our hypothesis that ISTC increases the sensitivity of the level effect
to progressivity and weakens the others. The solid blue line indicates the breakdown
of welfare by component for the 2015 calibration, while the dashed red line shows the
same breakdown but for an economy that did not experience ISTC.

In the latter case, the uncertainty and inequality channels are more sensitive to
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for the 2015 calibration in the absence of investment-specific technological change.

Figure 11: Welfare Trade-offs With and Without ISTC.

changes in 0; given that the economy has a higher cost of insurance and that the wages
of lower-paid occupations react less to an outflow of workers. Additionally, given that
no ISTC took place, output per capita is much less sensitive to additional saving by
households as a result of lower progressivity.

7.3.1 The Impact of Occupational Choice

How would our results change if we ignored occupational choice and the equilibrium
effects it has on wages and other variables? Figure 12 shows how abstracting from

occupational choice, and assuming fixed 2015 employment shares, would have affected
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Figure 12: Optimal Progressivity in 2015 and Across Occupations, Without Occupational
Choice.

our results.

In this case, optimal progressivity in 2015 would be very close to estimated progres-
sivity, though still below it. ISTC still produces a high return rate on capital, which
lowers the insurance value of a progressive tax system relative to 1980. The steepness of
the level channel remains practically unchanged compared to the economy with occu-
pational choice.

The key difference in this experiment is the effects of progressivity on occupational
choice and wages. Whereas in the previous exercise employment shares responded to
changes in progressivity, in this economy they do not. Hence, a drop in progressivity
generates greater capital accumulation and an increase in the intensive margin by NRC
workers, but not the extensive margin (Figure 13).

As a result, the net effect of reducing 0; depends crucially on the relative strength of
capital accumulation versus rising hours in determining wages. Contrary to our previ-
ous exercises, lowering progressivity raises both NRC wages and their after-tax earnings,
which point to a greater strength of the inequality channel. This analysis is illustrated by
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Figure 13: Comparative Statics With Respect to Tax Progressivity in 2015 in the Absence
of Occupational Choice.

the breakdown of the welfare gain by occupation displayed in Figure 12b which shows
that, in contrast to previous exercises, individuals in the NRC occupation have a prefer-
ence for no progressivity at all. Meanwhile, agents in the remaining occupations wish
for high levels of 6;, given that there is no effect positive effect on their hourly wages
from reducing progressivity.

In the end, our answer to the question of what is the implication of technological
change for optimal taxation does not change in qualitative terms if we abstract from

occupational choice, though it does change quantitatively.
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8 Conclusion

We have developed a life-cycle, overlapping generations model with uninsurable id-
iosyncratic earnings risk, three sources of technological change, a detailed tax system,
and occupational choice. By estimating an aggregate production function with capital-
occupation complementarity and four types of labor inputs that differ with respect to
cognitive complexity and routine task intensity, we have shown that technological trans-
formation can fully account for the change in wage premia as well as the increase in
earnings inequality between 1980 and 2015. The main driver is Investment-Specific Tech-
nological Change which leads to more capital accumulation, increasing the relative wage
of non-routine cognitive occupations, which benefit the most from complementarity with
capital.

In isolation, increasing earnings inequality might strengthen the case for redistribu-
tive policies. However, we find a significant drop in optimal tax progressivity between
1980 and 2015. This fall can be solely attributed to ISTC. In our model, in addition to the
traditional effects of increasing work hours and savings, lower progressivity leads to an
inflow of workers into higher-paid occupations, which are more productive with higher
ISTC. This raises output and also the wages of those remaining in the occupations at
the bottom of the wage distribution, dampening the redistributive motive of the planner.
Finally, ISTC raises the real return rates on saving, making self-insurance easier and thus
weakening the insurance role of progressive taxation.

Our work suggests several promising lines for future research. First, while we may
tind that it is optimal to reduce the progressivity of the labor income tax system, this
does not mean that other redistributive policies are not advisable, such as subsidizing
access to education or training to enter better-paid occupations, see e.g. Krueger and
Ludwig (2016), Stantcheva (2018). There will be interesting interactions between these
policies, the tax system, occupational choice and wages. Second, we did not study capital
or wealth taxation in this paper. However, this paper’s importance of capital-occupation
complementarities could likely alter conclusions on optimal capital taxation. Third, we
do not consider job displacement due to technological change and non-participation in
the workforce. How would this affect our welfare analysis? Is a progressive tax system
the right tool to counter these phenomena, or are targeted measures more appropriate?
Finally, our computations do not take into account transitions, nor do they take future
technological change into account. Would lower progressivity still be optimal in an

economy with secular occupation-biased technological growth?
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APPENDIX

The Appendix is organized as follows. Section A indicates micro-data sources and meth-
ods. Section B describes the construction of production factor, price, and output mea-
sures. Section C describes the procedure to estimate the production function. Section
D outlines the procedure for the computation of the equilibrium. Section E describes

welfare evaluation measures and how to decompose them.

A Data Sets

Aa CPS

Imputation. From survey year 1968 to 1975, hours worked in the previous year are
not available. We follow Acemoglu and Autor (2011) and impute these by running a
regression of hours worked on the previous year on hours worked in the current year,
on an indicator variable for whether the individual worked 35+ hours last year or not,
on the current labor force status, on an interaction variable between the two previous
variables, and on the sector the individual worked in the previous year for the survey
years 1976-1978. We then use the estimated equation to assign hours worked in the
previous year to the 1968-1975 observations.

Weeks worked last year are not available for 1968-1975 also. We compute mean weeks
worked last year by race and gender for the years 1976-78 for each bracket and impute
those means for the 1968-1975 period.

Top-coding. To obtain accurate estimates of earnings inequality and wage premia,
we have to account for the top-coding in the CPS earnings data. We use the variables IN-
CWAGE, INCLONG] and OINCWAGE, in the taxonomy of Flood et al. (2018). We proceed
in two steps: (i) identify top-coded observations; (ii) assuming the underlying distribu-
tion is Pareto, we forecast the mean value of top-coded observations by extrapolating a
Pareto density fitted to the non-top-coded upper end of the observation distribution. For
details on the procedure to approximate the tail of a Pareto distribution see Heathcote
et al. (2010).

Top-coding thresholds in the ASEC change across variables and time. Information
on top-coding thresholds can be found on the IPUMS website. Prior to the 1996 survey
year, there is little documentation available regarding the thresholds, but the effective
top-coding thresholds are provided by IPUMS based on Larrimore et al. (2008). From
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1996 onward, the Census Bureau began reporting top-coding thresholds for a set of
income variables.

In addition, the Census Bureau has changed its top-coding procedure through time:
from 1996 until 2011, the values for top-coded observations were replaced with values
based on the individual’s characteristics (so-called cell/group means). From 2011 on-
ward, the Census Bureau shifted from an average-replacement value system to a rank
proximity swapping procedure.

Ideally, we would like to use a consistent procedure for handling top-coding across
time. However, since the Census Bureau started publishing top-coding procedures in
1996, they drastically reduced public use censoring thresholds. Heathcote et al. (2010)
found that the Pareto-extrapolation procedure does not perform well in this case. There-
fore, we only apply this procedure until survey year 1995. Heathcote et al. (2010) use
the extrapolation until survey year 1999, but we find that this produces a large jump in
earnings inequality in the late 9o’s which does not seem plausible.

Bottom-trimming. According to Flood et al. (2018), there is no publicly available
information on bottom-coding thresholds of income variables in the ASEC. To deal with
this shortcoming, a common practice in the literature is to select a bottom threshold on
earnings for inclusion in the sample. We use the procedure of Heathcote et al. (2010):
the final sample only includes observations where the hourly wage is above the mini-
mum threshold of one half of the federal minimum wage in each year (end-year federal

minimum wage data for farm and non-farm workers is retrieved from FRED).

Variable definitions. All variables are computed as explained in Acemoglu and
Autor (2011).

Sample selection. We build two samples, labeled A and B. Table 8 shows the number
of records at each stage of the selection process.

The initial sample is a cleaned version of the raw data, which excludes individual
records which are either: below the age of 16 in the previous year, not part of the
universe, not wage workers, did not work in the previous year, have zero or missing
weights, missing age, or have positive earnings but no weeks worked in the previous
year, or vice-versa. In 2014, two distinct samples were drawn because of sample redesign.
We keep the sample which is consistent with previous surveys.

Sample A excludes all records where the hourly wage is lower than one half of the
federal hourly minimum wage. We assume that this sample is representative of the

(non-institutionalized) U.S. population. In order validate the data, we compare a set
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Table 8: CPS Sample Selection (survey years 1968-2017)

Dropped Remaining

Initial sample 4,089,617
Wage > 0.5 X min. wage 116,608 3,973,009
Sample A 3,973,009
Age 25-64 861,598 3,111,411
Hours worked per week last year > 6 19,308 3,092,103
Sample B 3,092,103

of sample statistics on wages and hours worked to their aggregate (NIPA) counterpart.
This is shown on Figure A.1.

There is an average absolute deviation of 5% between the NIPA (Table 2.1, line 3)
and the CPS wage bill. Regarding hours of part and full-time employees, the NIPA
series (Tables 6.9B-D, line 2) is lower by 3.3%, on average, and 6.5% after 1986. The BEA
uses BLS data to calculate its hours worked series, but the variables are based on the
Quarterly Census of Employment and Wages (QCEW) data, rather than on the ASEC
variable “usual hours worked per week last year” used in this paper. The total number
of full- and part-time employees is much closer to the NIPA series (Table 6.4B-D, line 2),
albeit the gap is still 2.7% on average.

Sample B excludes individuals between 25 and 64 years old in the previous year.
We consider that 25 years old is a reasonable cutoff age, where individuals” occupation
choice has stabilized. According to the BLS, for 2018 the labor force participation rate
drops from 65% to 27%, on average, between the 55-64 and the 65 and older age brackets,
which justifies our upper bound for inclusion in the sample. We also exclude records
where individuals usually worked less than 6 hours per week in the previous year. This
is the sample we use to calculate inequality and wage premia statistics. For compar-
ison, Heathcote et al. (2010) have 2,578,035 individual records in their individual-level
database, covering the 1967-2005 survey years. This implies that we have around 63,000
records per year, on average, while Heathcote et al. (2010) have 68,000.

A.2 PSID

Data set structure. The PSID is a panel data set of U.S. individuals and family units. The
original 1968 sample was drawn from two independent sub-samples: n over-sample of

roughly 2000 poor families selected from the Survey of Economic Opportunities (SEO),

53



9 12.6
12.4
8_
) )
S 8 12.2-
()] ()]
o o
- )
7_
12.0
2 CPS s CPS
64 . NIPA 11.84 . NIPA
1968 1974 1980 1986 1992 1998 2004 2010 2016 1968 1974 1980 1986 1992 1998 2004 2010 2016
(a) Wages and salaries (b) Employee full- and part-time hours
12.0
11.84
11.6
11.4
11.2 ‘ CPS
: e NIPA

1968 1974 1980 1986 1992 1998 2004 2010 2016

(c) Full and part-time employees

Figure A.1: Comparison between aggregate labor variables in the CPS and in the NIPA.
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and a nationally representative sample of roughly 3000 families designed by the Survey
Research Center (SRC) at the University of Michigan. PSID surveys were annual from
1968 to 1997, and biennial since then.

Since 1968, the PSID has interviewed the individuals from the originally sampled
families, which have either remained in the 1968 family unit, or have split off, forming
their own. Although some information is collected for each individual in the family unit,
the greatest detail is for the so-called husband/reference person and the wife/spouse,
when present. In particular, information about wages, occupation, and hours worked
are often limited to these two family members, which is the reason why we will focus
on these two when analyzing PSID data. See the PSID website for the rules on how the
reference person is selected for each family unit.

Because the SRC sample was representative of the U.S. population in 1968, we will
restrict our analysis to those families and their split-offs (with a 1968 interview number
below 5000). No weights are used for this reason. The main issue with this choice is the
inflow of immigrants since 1968. In 1990, the PSID added 2000 Latino households, which
covered a major immigration group but missed out on a range of post-1998 immigrants,
such as Asians. Because of this short-coming, this sample was dropped in 1995. A new
sample of 441 immigrant families, including Asians, was added in 1997 (the so-called
“Immigrant” sample).

Variable definitions. To maintain consistency, we use the variable definitions of
Acemoglu and Autor (2011), which we used for the CPS data set and which are close to
those of Heathcote et al. (2010).

Bottom-trimming. As with the case of the CPS, we eliminate records where the
hourly wage is below one half of the end-year federal minimum wage.

Sample selection. As with the CPS, our data cleaning procedure and sample defini-
tion procedure is described in this subsection. We build two samples, labeled A and B.
Table 9 shows the number of records at each stage of the selection process.

The initial sample is a cleaned version of the raw data on heads and spouses only,
and excludes individual records which are: below the age of 16 in the previous year, not
wage workers, did not work in the previous year, missing age, or have positive earnings

but no weeks worked in the previous year, or vice-versa.
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Table 9: PSID sample selection (survey years 1968-2017)

Dropped Remaining

Initial sample 260,449
Wage > 0.5 X min. wage 69,638 190,811
Sample A 190,811
Age 20-64 9,959 180,852
Hours worked last year > 260 5,704 175,148
Sample B 175,148

B Measures

B.1 Labor Supply and Wages

We follow the procedure of Krusell et al. (2000) to build measures of wages and the labor
supply for each of the labor categories (NRC, NRM, RC, RM). The sample used for this
purpose is the same as the one used for the regression analysis described on section 3,
apart from the fact that we include workers which did not work full-year or full-time.
The reason for this is that in the regression analysis we were aiming to identify the wage
premia by observing workers in a similar labor market situation. Here, the aim is to
construct measures of labor inputs and wages which will be used in the estimation of
the production function. We use these bins in order to exclude phenomena such as the
increased labor force participation of women from the estimation. Since the labor supply
of part-time workers contributes to real GDP, it is necessary to account for those. We do
not, however, include self-employed individuals in the analysis. In what follows, the
subscript t denotes the year and i denotes an individual observation.

For each worker we record the following variables: hours usually worked per week
last year, weeks worked last year, earnings last year, potential experience, race, gender,
years of education, occupation category and ASEC weight. Potential experience is di-
vided into 5 five-year groups. Race into white, black and other. There are two sexes.
Education is divided into 5 categories: no high school, high school graduate, some col-
lege, college graduate, and post college education. Occupation groups are defined as
before.

Each worker is assigned to one group defined by the variables described. There are
600 groups, each one denoted by ¢ € G. For each group, we construct a measure of the
labor input and labor earnings. The individual labor input is defined as l;; = hjwk;;,
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where hj; is hours usually worked last year and wk;; is weeks worked last year. The
individual wage is defined as w;; = y;;/1;;. Therefore for each group g we define:

lot =
gt Ut

Yicg WitHit
Wep = ———,
Hgt
where pj; is the individual ASEC weight and g = )i, pir- We aggregate the set G of
600 sets into the occupation categories previously defined o € {NRC,NRM, RC,RM}.
From this aggregation we obtain total annual labor input per group, N, , and its hourly
wage, w, . We assume that the groups within a category are perfect substitutes, and for

aggregation we use as weights the group wages of 1980. Thus, for each category o, we
have:

Nyt = Z lgtwgSO,ugt;
ges

Egeo wgtlgt,ugt
Not '

7

Wo,t =

where u;; is the individual ASEC weight and ¢ = ) ;cs #ir- This yields a measure of
the total labor input in hours by category (hnrc ¢, INRM ¢, IRC +, BiRM £), @s Well as average
hourly wages (WNRc,, WNRM, ¢, WRC,t, WRM,t)-

B.2 Capital, Prices and Output

Table 10 shows the definitions of main variables compared with those of Krusell et al.
(2000).

Table 10: Comparison with Krusell et al. (2000)

Variable Definition Definition (KORV)

Output Business non-farm gross value added Private domestic product (excluding housing and farm)
Structures Non-residential structures (private) Non-residential structures (private)
Equipment Equipment (private) Non-military equipment (private)
Equipment price Equipment price deflator (BEA) Authors’ calculations based on Gordon (1990)

Capital. Our main source for capital data are the BEA’s fixed asset accounts and the

NIPA. We use only private capital in our measure. Nominal investment for each asset
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category is deflated using the investment price index from the BEA.

Equipment prices. To obtain the price of equipment in each year, we aggregate in-
vestment price indices from the BEA fixed asset accounts (Table 5.3.4) across equipment
types using a Torqvist index. We then divide the resulting average equipment price by
the BLS consumer price index for all urban consumers to obtain the relative price of
investment.

Depreciation rates. Obtained using the method by Eden and Gaggl (2018). We use
BEA data on the net current cost of the stock of capital, P;NetStock;;, and depreciation
at current cost, P;Dep;;, to compute depreciation rates, which are given by the following

formula:

_ PitDep;,
P;NetStock;; + P;;Dep;,”

Jit

We compute average depreciation rates for equipment and non-residential structures,
with weights given by the capital stocks at constant prices.

Output. To measure output, we use real gross domestic product in chained 2012 US
dollars, retrieved from FRED (FRED code: GDPCA; NIPA code: A191RX).

58



C Production Function Estimation Method

To estimate the production function, we use the two-step SPML estimator proposed by
Ohanian et al. (1997). First, we write the non-linear state space model formally. Next,
we briefly describe the methods used to estimate it.

Our non-linear state-space system of equations is of the form:

Measurement equations : Zi = f(Xt, 1, wi; 0),

State equations : Yy = Yo + Y1t +vp.

f(.) contains the labor share equation, the three wage bill equations and the no-
arbitrage condition. Z; is thus a (5 x 1) vector, which is a function of the variables X;,
the log of the unobservable labor quality indices ;, which is a (4 x 1) vector, and v;
and w; which are (5 x 1) and (4 x 1) vectors, respectively, of i.i.d. normally distributed
disturbances. Like Krusell et al. (2000), we assume that A;;; and ;11 are known when
investment decisions are made.

The model is estimated in two steps: (i) instrument the variables which are potentially
endogenous; and (ii) apply the SPML estimator. We assume that the capital stocks,
Ks: and K., are exogenous at date t. However, we allow for the possibility that date
t values of the labor inputs may respond to realization of the technology and labor
quality shocks. To instrument these variables, we run a first stage regression of the labor
inputs on a constant, current and lagged equipment and structure capital stocks, the
lagged relative price of equipment, a trend and the lagged value of the OECD composite
leading indicator of business cycles. X; is the vector of K ¢, K, t, the instrumented values
of the labor inputs, the depreciation rates and the capital income tax.

The SPML procedure is as follows. Given the distributional assumptions on the error
terms, for each t we generate S realizations of the dependent variables, each indexed by

i, starting at t = 1 in two steps:

Step1: ¢ = o+ Y1t + v
Step2: Zi= f(X;, v, wl,0).

In Step 1, we draw a realization of v; from its distribution (conditional on our guess of
) and use it to construct a date ¢ value for ;. In Step 2, we use our realization of ¢, lpi,
together with a draw of w; (conditional on our guess of 7,), to generate a realization of

Zt, Zi. By using this procedure to generate S realization, we can obtain first and second
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simulated moments, respectively, of Z;:

. 1S, .
mg(Xg; 0) = S ZZZ,
i=1

Vs(X,;0) = é .Sl (2~ ms(%:0)) (i - ms(f(t;()))/.
o

From this procedure, we will obtain 2T moments, which we will use to construct an ob-
jective function. Denoting the vector of all actual observations of the dependent variables
by ZT:

T

1
T. _
Ls(2%;0) = 2Tt_1[

[Zt — ms(Xt; 9)]IVS (Xt,' 9)_1 [Zt — Mg (Xt,' 9)] In det(Vs(f(t; 9))} .
The SPML estimator, §5T, is the maximizer of this expression. It is very important that

throughout the maximization procedure of the objective function the same set of (T x S)

random realizations of the dependent variables. Otherwise, the likelihood becomes a

random function.
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D Solution Algorithm

To characterize the stationary competitive equilibrium of the model we must find the

: Ks Ke  Nnrm _Nrc Nrm : :
ratios Nnrc’ Nusc’ Nure” Nurc” and Nazc which clear the capital and labor markets. In

addition, we have to fit the tax function, clear the social security budget and find the

value of I' which, given a distribution for the state variable b, uniformly distributes the
assets of the dead among the living. G, public consumption of final goods, clears the
government budget constraint. The algorithm is as follows:

Ke  Nnrm  Nrc Nrm
1. n < n .
Make a guess o Nuae” Nure? Nugos @ d Navzc

Ks
NNRC

arbitrage condition 27 using a bisection method. Compute marginal productivities

2. Obtain the value of

which is consistent with the remaining ratios given the no-

17-21 with these guesses.
3. Guess 95, I and average earnings.

4. Compute value and policy functions for the retired and active agents by backward
induction, given processes for the transitory and permanent shocks. Both shocks
are discretized using the Tauchen procedure (Tauchen, 1986), with 4 and 20 states,
respectively. We use 20 states for the permanent shock so that we have 5 states
for each group supplying a different labor variety. This allows us to calibrate both
within-group and between group earnings inequality. The grids for b and n have 24
and 100 points, respectively. In between the grid points, the values of the functions
are interpolated using cubic splines.

5. Simulate the model for 120,000 agents, where assets holdings are zero for every
agent entering the labor market. Obtain total savings (asset demand), [ d + T'd®,
and quantities of each labor variety supplied, Nxrc, Nvrm, Nrc, NruM-

6. Compute output given the labor supply of households. Asset demand must be

allocated between structure and equipment capital. The quantity of structures is
Ks

NNrc

by households Nygc. The quantity of equipment, measured in consumption units,

obtained by multiplying the initial guess of by the quantity of labor supplied

is the residual of asset demand. If this residual is negative, we set the quantity
of equipment to be 10% of the guess for the structure stock, which allows the
algorithm to proceed.

7. Obtain implied values for ¢, I' and average earnings. Compare with guesses

made in step 4. If the difference between guesses and implied values is within
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a preset tolerance interval, proceed to step 8. If not, update the guesses of each
variable and go back to step 4.3

8. Compute the difference between the ratios implied by the labor supply and asset
demand of households with the initial guesses. If these differences are within a
preset tolerance level, the solution has been reached with sufficient accuracy. If
not, update the guesses and go back to step 2.

E Welfare

A household chooses an occupation after drawing a random vector s which determines
the utility of joining each occupation type. Let x(s) denote the idiosyncratic utility of
joining a particular occupation given the vector s. Thus, the expected lifetime utility of
that household is given by:

v(s) = «(s) + Ey Z,B] [Sju(cj,nj) + (1 —S;)D(bj41)] | - (A-1)

Utilitarian social welfare is defined as:
W= /v(s)dcb(s) (A-2)

where ®(s) is the distribution over the idiosyncratic occupation costs after occupation
decisions are made. The problem solved by our social planner is:

nw(j,o,a,u)

max W, s.t. G*:/Tr b+T —i—TC—l—I’lT{
k( ) c 1 1+Tss

dd A-
{61,00} ] (A-3)

That is, the social planner takes government spending as given and find the socially
optimal progressivity and level of the tax system to raise the required revenue. For a
given s, if we scale consumption by 1+ g(s) in each period and state of the world, the

expected lifetime utility of the resulting allocation is:

v(s;g(s)) = +1Eol2f57 [Sju(cj(1+g(s)), m >+<1—s,->D<b]~+1>]]. (A-4)

350ur algorithm uses the homotopy procedure to update all the guesses. That is, if v is the initial guess
and v’ is the value implied by the simulation, then the updated guess is v/ = v+ a(v' — v), where a is a
constant chosen by the researcher which controls the size of the update and the rate of convergence of the
algorithm.
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Isolating 1 + g(s) in the right-hand side of the equation:

] J
v(s;g(s)) = x(s) + 25]_15]- log(1+g(s)) + Eo lz ﬁ]_l [S]-u(c]-, ni)+ (1— S]-)D(b]-ﬂ)] . (A-5)
=1 i—1

Integrating over the idiosyncratic state s:

I
W(g) =log(1+g) Y p'S;+W. (A-6)

j=1

Let v(s, B) denote the expected lifetime utility of a household with starting state s
under an alternative government government policy B. Let W(B) denote the expected
utility of an unborn individual under that alternative policy. Let gi;(s) denote the con-
sumption equivalent variation necessary to make an individual starting in state s in-
different between benchmark policy A and alternative policy B. These variables must
satisfy the following system:

v(s;gu(s)) = v(s, B), (A-7)
W(gu) = W(B). (A-8)

Given these definitions we can define the consumption equivalent variation for an

unborn individual by substituting A-6 into A-8:

I .
log(1+gu) Y B ~'S;+ W = W(B). (A-9)
j=1
Solving for gy:
Su = exp V\;(L__lw -1 (A-10)
Z]':1 p/ SJ'

To breakdown the welfare analysis into inequality, uncertainty and level effects, we
decompose g using the method of Flodén (2001). We define the certainty-equivalent
consumption-leisure bundle for a household starting with state s as:

Y u(c,n) =u(s), (A-11)
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where ¢ and 7 are constant streams of consumption and labor supply. Following Flodén
(2001), we set 71 to the average labor supply in the economy. We also remove survival
uncertainty on the left-hand side and set the utility of bequests to zero. That leaves only

¢ to be determined. Solving A-11 for ¢:

. o(s) altn )
C = exp (Z}lﬁjl +X1+11) . (A-12)

We can now define the cost of inequality:

/. o /
2B (1= pne)CN) = [ Y ue, ) de(s) = W, (A-13)
]:

=1

where C and N are the average of consumption and labor certainty-equivalents, C =
[cd®(s),and N = [ 2d®D(s). Isolating pine:

W -
ine = 1 —ex S S — M(C, N) . (A-14)
! ’ (z}l p )

The cost of uncertainty is defined as:

/. ]
Y B u((1 = punc)C,N) = / Y u(C,N)do(s), (A-15)
j=1 j=1

where C and N are average consumption and labor in the economy. Solving for pync:
Punc =1 —exp (u(C,N) —u(C,N)). (A-16)

Finally, we are ready to asses the impact of a policy shift in the level of consumption.
However, a shift from policy A to B will change equilibrium levels of both consumption
and labor. To measure the welfare effects in terms of consumption only, we define leisure-

compensated consumption denoted by CB:

ZI; BI~1u(CB,N4) = Z]; BI~1u(CB, NB). (A-17)

j=1 j=1

64



Solving for CB:

(A-18)

Bl+17 . A1+17
CB =exp <logCB —)(N N )

1+7

We now have all the ingredients necessary to define the three separate welfare effects
of a change from policy A to policy B. Denote g, as the welfare gain from a change in
the levels of consumption and leisure as a result of the policy shift:

CB
Qlev = a —1. (A'19)

Denote gine as the welfare gain from reduced inequality:

1-— pil;e
Qine = — — L. (A-20)
1- piﬁe

Denote gunc as the welfare gain from reduced uncertainty:

1-— pEnC
= func g A-
§unc 1- pénc ( 21)

Flodén (2001) establishes the following result, which we use in the welfare analysis

section to decompose welfare gains into the the three elements:

Su = (1 + glev)(1 + gine)(l + gunc) -1 (A-22)
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