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Lecture Objectives:

>

>

v

v

v

Introduction to state space models.

ARMA and VAR casted as a state space model.

Introduction to the Kalman Filter
Smoothing vs Filtering

Kalman Filter applications



Secondary Readings:

» Chapter 6, Canova

» Chapter 13, Time Series Analysis, Hamilton, James, first edition



Intro to State Space Models

» The state space models formulation is quite general.
» It encompasses all the models we have seen so far.

» However, the analysis involved are more complex and it is
simpler to use the models we have seen in their previous
formulations.

» However, the state space models become quite useful for
different specifications. Particularly, when we are dealing with
unobservable variables (state variables) and with measurement
error.
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Linear State Space Models

» Let the values of the state (unobserved) at time ¢ be given by
vector 6, and y, be a vector of observed variables at time ¢. The
linear state space model can be represented by:

v = Fb+uv (Measurement Equation) (1)
0, = Gb_1+w (Transition Equation) 2)

where 0y ~ N(mg, Cy), v; ~ N(0,V;) and w, ~ N(0, W;).



Examples
» Any ARMA model can be formulated as a state space model.
Example 1: ARMAQ2,1) y;, = a1yi—1 + a2yi—1 + € + b1g,—1 can

be written as:

(Measurement Equation)

_ Vi
y-t= [1 O] [azyzz +b15tl:|

(Transition Equation)

N e PO 13 P
ayi—1 + big; ay 0] |a2y—2 + b1y by
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Examples

» Any VAR model can be trivially formulated as a state space
model. Example 2: VAR(1) y; = A1y;—1 + &; can be written as:

(Measurement Equation)

yt=y_t

(Transition Equation)

y_t=A_ly_ t-1+¢



Examples

» Any latent variable specification can also be formulated as a state
space model. Example 3:

(Measurement Equation)

y_t=A_ty_t-1+uvy

(Transition Equation)

A t=A_t1+vy
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Filtering

» The State space models includes latent states (unobservable).
Hence, we need to estimate the latent states in order to make
predictions of the observables y;.

» One way to estimate the latent states is called filtering.

» The idea behind filtering is to use all the information up to data ¢
to make predictions of the state vector.

Let D; be all the data up to date ¢ including the observation y;.
Then, Bayes updating gives us that:

p(:|0)p(0:|Ds—1)
p(yr)

Given the results of last lecture and the normality assumptions
on the state space model we know that 6,|D, ~ N(m;, C;)

p(et‘Dt—layl) =



Kalman Filter

» The Kalman Filter is used to compute optimal forecasts of y; as
well as recursive estimates of the state variables 6, with time ¢
information for state space models.

» Its possesses many useful applications:
1. Economics:

Time Varying Parameters
Markov Switching Models
Unobserved Components
Likelihood Maximization

2. Elsewhere:

vVvyyVyYyy

» Navigation
» Signal Extraction
» Robotics
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Kalman Filter Algorithm

» The prior, likelihood and posterior distributions are given by:
0[’1)1_] ~ N(at, Rl) y,w, ~ N(Ft/et) HZ‘DI ~ N(mt7 C[)

» Assuming, Fy, G;, V, and W, are known, the recursive algorithm
of the Kalman filter, with 6y ~ N(myg, Cp), is now presented:

» Step 1: Update Prior

ar = E(9t|Dt71) = Gymy—y (3)
Rt = Var(9t|D171) = G,C;,1G; + W[ (4)
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Kalman Filter Algorithm

» Step 2: Forecast y, and mean square of the forecast error (with

t — 1 info)

fi = EW|Di—1) = F;at
0 = Va”(}’t|Dt—1) = F;RtFt +Vi

» Step 3: Calculate the prediction error and the Kalman gain

€

Yt —ft
RF, Q!

6))
(6)

(7N
®)
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Kalman Filter Algorithm

v

Step 4: Update state estimate: (with ¢ information)

m; = (l;‘l‘K[ez (9)
Ct = Rt_KtQth/ (10)

v

Step 5: Repeat previous steps until t = T

v

The posterior mean of the state is a weighted sum of the prior
mean and the forecast error.

v

Also, notice that the variance of the posterior distribution, C;, is
less than the variance of the prior distribution R;.
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Smoothing

» Another way to estimate the state vector is to use the entire
sample information instead of just up to time .

» The strategy is then to start in the lat period observation and
update the state 0; backwards.

(61 |Dy) = / (01116, D)p(6,\D,)do,

9:—1‘Dt ~ N(at(—l),R;(—l))

where

at(_l) = M +Bt—l(mt - at)
1?[(‘_'1) - (jt—-l - l?[__l (13, - (jt)13;4,1
By = CGR'
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Smoothing vs Filtering

» Smoothing is particularly useful when we are interested in the

value of the unobserved variables for a specific sample period.

» It is not useful to make predictions of observables.

» Important: Cannot be used to estimate likelihood and model
parameters. For that, we need to use filtering.
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Prediction

» Theorem: If initial conditions (priors) and innovations are
normal, Kalman filter is the best predictor (linear and nonlinear)
of y,. Else, it gives the best linear predictor.

» With the estimated state at date ¢ using the Kalman Filter we can
make predictions of future values of observables.

» The one-step ahead forecast is given by:

E[yi11|Dy] = E[F110i41 + vip1 D] = Fiya1 = fin

varlyiy1|D;] = var[Fi, 0,41 + v D] =

F*_t+1var[0; 4 1|Di|Fii1 + Vi1 = Fi Ry 1 Frpr + Vigr = Qi
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Maximum Likelihood Estimation

> Let y, be an m x 1 and let ¢ represent a vector of coefficients to
be estimated. The likelihood L(y1, ..., y;, ¢) can be written as a
decomposition of the prediction error:

Tm 1<
L5 Y @) = —— In2m -5 Zln]Z,‘,_]]
- (1D

T
*Z yt|tl J,],l()’t_wal)
t=1

l\)»—a

where e; = yr — y;—1 ~ N(0,%;,_1) and y1 ~ N(y1,%1);
er=yr—Ji
> Given ¢ the Kalman filter can be used to compute ¢;, ¥, for

all . Then we can estimate ¢ by maximizing (11). Do this until
convergence. This process is called the EM algorithm.
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Applications

v

Random Walk plus noise model

> As an example, consider the monthly inflation of CPL

v

In practice, we do not observe true inflation. Moreover, even the
inflation CPI data has some measurement error.

v

We can model inflation using the following state space model:

(jl)]) = Tt + Uy

Tt T—1 + Wy
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Applications
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Applications

» Now consider the Nile flow at Aswan data from 1871 to 1970.
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Applications

> We could try to model the moving average flow of the river using
a state space model with time varying coefficients to capture the
structural change that seemed to happen around 1900.

» In order to do that, we will introduce a time dummy variable x;
that will take value O just before 1900 and 1 thereafter.

Vi = Wt AiX + vy
e = [y—1 T Wiy
A= Ao+ wy

» In this example, F; varies over time and our state vector is
0r = (p, /\t)T
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Applications

Intercept and slope estimates
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Applications
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Questions to think about

» Although state space models are fairly general as presented in
this lecture, what extensions could make them even more
general?

» What is a latent variable? How can we optimally estimate a
latent variable?

» What is the basic idea behind the Kalman Filter?

» Why can’t we use smoothing to estimate likelihood?
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