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Lecture Objectives:

I Introduce the MA models and their properties.

I How to identify MA models.

I Describe the MA(∞) representation and the Wold
Decomposition.

I ARMA models and their properties.

I Identification and estimation of ARMA models.

I Forecast of univariate series using ARMA.
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Secondary Readings:

I Chapter 2, Applied Econometric Time Series, Enders, Walter,
Fourth Edition

I Chapter 3, Time Series Analysis, Hamilton, James, first edition
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Moving Average Models (MA models)

I The general form of a MA model of order 1 , MA(1), is the
following:

yt = c0 + εt − θ1εt−1 (1)

where εt is a white noise process

I Similarly, a MA(2) model is in the form

yt = c0 + εt − θ1εt−1 − θ2εt−2 (2)

I and a MA(q) model is

yt = c0 + εt − θ1εt−1 − ...− θqεt−q (3)
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MA(q) Properties

I MA models are always weakly stationary because they are finite
linear combinations of a white noise process.

I The unconditional mean is:

E(yt) = c0 (4)

I And the Variance:

Var(yt) = (1 + θ2
1 + θ2

2 + ...+ θ2
q)σ

2 (5)

I The autocovariance and autocorrelation is zero after q lags.
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MA(1) Autocovariance and Autocorrelation
I Assume for simplicity c0 = 0 for a MA(1). If we multiply the

model by yt−j we have

yt−jyt = yt−jεt − θ1yt−jεt−1

I Taking the expectation we obtain

γ1 = −θ1σ
2 (6)

γj = 0 ∀ j > 1 (7)

I And the autocorrelation (just divide by γ0) is:

ρ0 = 1 (8)

ρ1 =
−θ1

1 + θ2
1

(9)

ρj = 0 ∀ j > 2 (10)

6 / 37



MA(1) Invertibility

I Rewriting the zero-mean MA(1) as εt = yt + θ1εt−1, one can use
the method of iteration to find:

εt = yt + θ1yt−1 + θ2
1yt−2 + ...

I Intuitively, θj
1 should go to zero as j increases because the remote

yt−j should have very little impact on yt.

I Consequently, for a MA(1) model to be plausible, we require
|θ1| < 1

I Such a MA(1) model is said to be invertible. Note: When a
MA(1) is invertible, we have a stationary AR(∞) representation.
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MA(q) Identification
I The same is true for the MA(q) model. The autocorrelation

coefficients are non-zero for q lags and then they are all zero.

I Hence, we can use the ACF to determine the order of the MA
model.

I Example: Here we choose lag-12, MA(12)
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Figure: Portugal’s GDP business cycle ACF
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MA(q) Identification

I In fact the ACF provides exact information on which specific
lags to inclue.

I This is in contrast to the PACF for AR processes.

I To see why. Consider a simple MA(2) model with θ1 = 0. The
model is yt = c0 + εt − θ2εt−2. The ACF of the model is:

ρ0 = 1, ρ1 = 0, ρ2 =
−θ2

1 + θ2
2
, and ρj = 0 ∀j > 2

I Hence, in the last example we would select a MA(12) with
positive coefficients at lags 1, 2, 4, 5, 6, 8, 12.
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MA(q) Estimation

I The commonly used method is maximum likelihood method.

I Example: Lets estimate the MA(12) model of the Portugal GDP
business cycle (For presentation sake, we estimate all lags
coefficients):

Figure: Portugal’s GDP business cycle MA(12) Estimation
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MA(q) Estimation

I Moreover, the model is adequate as we have the following ACF
of the residuals:
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Figure: ACF of MA(12) residuals

I and the Ljung-Box statistic is: 12.818. Hence, we do not reject
the null hypothesis of no serial correlation.
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Summary

I for AR model, PACF is useful for selecting the lags because the
PACF cuts off at lag p.

I for MA models, ACF is useful in determining the lags because it
cuts off at lag q

I a MA series is always stationary, but an AR series to be
stationary, all of its characteristic roots must be less than 1 in
modulus

I AR models can be estimated by LS while the MA models are
generally estimated by MLE.
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The MA(∞) process and Wold Decomposition

I Wold (1938) showed that the autoregressive and moving average
processes are specific cases of a general representation of
stationary processes.

I Wold Decomposition: any weakly stationary stochastic process,
zt, with finite mean, µ, that does not contain deterministic
components, can be written as a linear function of uncorrelated
random variables, at , as:

zt = µ+

∞∑
i=0

φiat−i (11)

where at is a white noise process and φ0 = 1
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The MA(∞) process and Wold Decomposition

I The Wold Decomposition is extremely important because it
shows that any stationary process has a linear MA(∞)
representation.

I However, in practice we cannot estimate an infinite number of
coefficients. Hence, we need to impose some restrictions.

I The AR admit an MA(∞) structure, but they impose restrictions
on the decay patterns of the coefficients φi.

I The MA require a number of finite terms, however, they do not
impose restrictions on the coefficients.

I From the point of view of the autocorrelation structure, the AR
processes allow many coefficients different from zero, but with a
fixed decay pattern, whereas the MA permit a few coefficients
different from zero with arbitrary values.
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ARMA models

I ARMA models combine the features of both AR and MA models
and allow us to represent in a reduced form (using few
parameters) those processes whose first q coefficients can be any,
whereas the following ones decay according to simple rules.

I This allows for a very flexible model of linear time series.

I An ARMA(1,1) model satisfies:

yt − φ1yt−1 = φ0 + εt − θ1εt−1 (12)

I The left-hand side of (47) is the AR component and the
right-hand side gives the MA component. For the model to be
meaningful we need φ1 6= θ1 (why?)
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ARMA(1,1) Properties

I Properties of the ARMA(1,1) are generalizations of those of
AR(1) with modifications to deal with the MA(1) component.

I We start again assuming that the model is stationary and in the
process we reach the conditions under which the process is
indeed stationary.

I Lets take expectation of (47):

E(yt)− φ1E(yt−1) = φ0 + E(εt)− θ1E(εt−1)⇒

E(yt) = µ =
φ0

1− φ1
(13)

Which is exactly that same as that of the AR(1) in (13).
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ARMA(1,1) Properties

I Next we assume again for simplicity that φ0 = 0 and consider
the autocovariance function of yt. First multiplying the model by
εt and taking expectation:

E(ytεt) = E(ε2
t )− θ1E(εtεt−1) + φ1E(yt−1εt) = E(ε2

t ) = σ2

(14)
I Next, we rewrite the model as:

yt = φ1yt−1 + εt − θ1εt−1

I Taking the Variance of the previous equation we find that:

Var(yt) =
(1− 2φ1θ1 + θ2

1)σ
2

1− φ2
1

(15)
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ARMA(1,1) Properties

I Because the variance is positive, we need φ2
1 < 1 (i.e., |φ1| < 1)

I Again, this is the same starionarity condition of the AR(1)
process.

I To obtain the autocovariance we just multiply the model by yt−j

to obtain:

ytyt−j − φ1yt−1yt−j = εtyt−j − θ1εt−1yt−j

I Take expectation and use (49) for t− 1 we can find that for j = 1:

γ1 − φ1γ0 = −θ1σ
2

I This is different from the AR(1) process where γ1 − φ1γ0 = 0
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ARMA(1,1) Properties

I However, for j = 2 we have:

γ2 − φ1γ1 = 0

I In fact, that is also true ∀ j > 2

I Hence, for an ARMA(1,1), the ACF is going to be given by:

ρ1 = φ1 −
θ1σ

2

γ0
, ρj = φ1ρj−1 for j > 1 (16)

I Thus, the ACF of an ARMA(1,1) behaves very similar to that of
an AR(1) model except that the exponential decay starts at lag-2.
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ARMA(1,1) Properties

I Notice that the ACF does not cut off at any finite lag.

I Turning to the PACF, one can show that it does not cut off at any
lag either.

I In summary, the stationarity condition of an ARMA(1,1) is the
same of AR(1)

I The ACF of ARMA(1,1) behaves similarly to AR(1) after lag-2

I The PACF of ARMA(1,1) similarly to MA(1) after lag-2
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General ARMA(p, q) models

yt = φ0 +

p∑
i=1

φiyt−i + εt −
q∑

i=1

θiεt−i (17)

I Note the AR and MA models are special cases of ARMA
models. Using the Lag operator we have:

(1− φ1L− ...− φpLp)yt = φ0 + (1− θ1 − ...− θqLq)εt (18)

I The AR component on the left-hand side introduces the
characteristic equation. The ARMA(p,q) model is stationary if
all the characteristics roots are less than 1 in modulus.
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Identification and Estimation of General ARMA(p, q)
models

I We cannot use the ACF and the PACF to identify the order of an
ARMA model.

I The information criteria are the commonly used methods to
select the order of an ARMA model.

I In practice, we compute the AIC for all different combinations of
lags p and q and select theone that gave the minimum AIC.

I ARMA models are typically estimated with ML methods.
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Forecast

I ARMA models are particularly useful to make predictions of a
univariate time series.

I First, consider the forecasts from the AR(1) - ARMA(1,0) model
yt = φ0 + φ1yt−1 + εt. Updating one period, we obtain

yt+1 = φ0 + φ1yt + εt+1

I If you know the coefficients φ0 and φ1, you can forecast yt+1
conditional on the information available at period t as

Et(yt+1) = φ0 + φ1yt
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Forecast

I In the same way, since yt+2 = φ0 + φ1yt+1 + εt+2, the
conditional expectation of yt+2 at time t, i.e. Et(yt+2|yt+1, yt) is

Et(yt+2) = φ0 + φ1Et(yt+1)

I Hence, we can use the one-step ahead forecast to compute the
two-step ahead forecast.

Et(yt+2) = φ0 + φ1(φ0 + φ1yt)

I Using forward iteration we can get the entire sequence of
forecasts

Et(yt+j) = φ0(1 + φ1 + φ2
1 + ...+ φj−1

1 ) + aj
1yt (19)
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Forecast

I (54) is called the forecast equation.

I Note that if the AR model is stationary, |φ1| < 1. Hence, as j
goes to infinity we have

Et(yt+j)→
φ0

1− φ1
(20)

I Which is the unconditional expectation of the AR(1)!

I Actually this is a very general result: For any stationary ARMA
model, the conditional forecast of yt+j converges to the
unconditional mean as j→∞
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Forecast

I Now lets take a look at MA(1) or ARMA(0,1).

yt+1 = c0 + εt+1 − θ1εt

I Thus, the one-step ahead forecast is

Et(yt+1) = c0 − θ1εt

I The two-step ahead forecast from the equation

yt+2 = c0 + εt+2 − θ1εt+1

I is

Et(yt+2) = c0

I Point: It quickly reverts to the unconditional mean!!
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Forecast

I The ARMA(p,q) combines both and the forecast function of the
j-step ahead is given by:

Et(yt+j) = φ0 +

p∑
i=1

φiEt(yt+j−i)−
q∑

i=1

θiεt+j−i (21)

I Notice that the AR component dominates the forecast in j > q.
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Forecast Error

I Forecasting from time period t, we can denote the j-step-ahead
forecast error, called et(j):

et(j) ≡ yt+j − Et(yt+j) (22)

I Since the one-step-ahead forecast error is equivalent to
et(1) = yt+1 − Et(yt+1) = εt+1

I Hence, et(1) is precisely the “unforecastable” portion of yt+1,
given the information available in t.

28 / 37



Forecast Error

I Lets introduce the MA Representation of the ARMA(p,q) model,
i.e. this should not come as a surprise given the Wold
decomposition.

yt = µ+ εt + ψ1εt−1 + ψ2εt−2 + ... = µ+ ψ(L)εt (23)

I The coefficients {ψi} are referred to as the impulse response
function. For a weakly stationary series, these coefficients decay
exponentially as i increases. Under this representation it is easy
to compute the forecast error:

et(j) = εt+j + ψ1εt+j−1 + ...+ ψj−1εt+1 (24)
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Forecast Error
I Hence, the variance of the forecast error in j period is given by:

Var[et(j)] = (1 + ψ2
1 + ...+ ψ2

j−1)σ
2 (25)

I Note that as j increases, the variance of the forecast error
increases. But if the series is stationary, at some point it
converges to the unconditional variance of yt

I In practice, we do not observe ψ. We need to estimate them and
the forecast error is compounded by the parameter uncertainty.
This is one of the reasons many time series practitioners and
theorist advocate for small models.

I This is probably one of the reasons simple ARIMA models
out-performed the large scale macro models used in the Cowles
Commission.
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Combining Forecasts

I What if there are many plausible models to explain the data?
Should we discard them? Or use them to make predictions?

I It turns out that it can be quite beneficial to combine forecasts of
different plausible models.

I Let fit be the one-step-ahead forecast. Then the combined
forecast is:

fct = w1f1t + w2f2t + ...+ wnfnt (26)

where
∑n

i=1 wi = 1
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Combining Forecasts
I If all the forecasts are unbiased, so will be the combined forecast:

Et−1[fct] = w1Et−1[f1t]+w2Et−1[f2t]+...+wnEt−1[fnt] = yt (27)

I Moreover, lets take a look at the variance of the combined
forecast error. For simplicity, lets assume we have two plausible
models:

ect = w1e1t + (1− w1)e2t (28)

So

var(ect) = w2
1var(e1t)+(1−w1)

2var(e2t)+2w1(1−w1)cov(e1t, e2t)
(29)

Hence, the combined variance can be lower than the variance of
either individual forecast.
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Forecast - Example

Forecasts from ARIMA(4,0,4) with non-zero mean

1995 2000 2005 2010 2015

-4
00

-2
00

0
20
0

40
0

Figure: Forecast 5-step ahead of Portugal GDP Business Cycle
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Forecast Seasonal- Example

Forecasts from ARIMA(4,0,4) with non-zero mean

2000 2010 2020 2030
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Figure: Forecast 60-step ahead of Portugal GDP Business Cycle
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Forecast - Example

Forecasts from ARIMA(4,1,4)(1,1,0)[4]

1995 2000 2005 2010 2015
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Figure: Forecast 10-step Portugal GDP
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Summary

I Any stationary process can be represented by an MA(∞).

I The properties of an ARMA model follow closely the properties
of an AR process woth some modifications to account for the
MA component.

I For an ARMA model to be stationary, the characteristic roots of
the difference equation must lie inside the unit circle.

I The ARMA models are particularly good at forecasting few
steps ahead.
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Questions to think about

I What is the most appropriate data transformation?

I What should be done about seemingly significant coefficients at
reasonably long lags?

I How to deal with seasonality? How to deal with
non-stationarity? Lecture 5.

I What if I am interested in the relationship between economic
variables? Next lecture.
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