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Lecture Objectives:

I Learn the canonical random walk model and its variations.

I How to remove a trend? Detrending vs Differencing the data.

I Dickey-Fuller tests for stationarity.

I Seasonality and structural breaks.

I Introduction to the HP filter.



Secondary Readings:

I Chapter 4, Applied Econometric Time Series, Enders, Walter,
Fourth Edition

I Chapters 15, 16, 17 and 18, Time Series Analysis, Hamilton,
James, first edition



Examples of non-stationary series
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Figure: Federal funds rate and Industrial Production Index time series



Random Walk

I The non-stationary canonical model is the random walk model:

yt = yt−1 + εt or (∆yt = εt) (1)

I Note that the in first difference ∆yt the model is stationary.

I Given an initial condition y0 we can find the solution to (1):

yt = y0 +

t∑
i=1

εi (2)



Random Walk

I Its mean is:

E(yt) = y0 (3)

I However the variance and autocovariance are time dependent

var(yt) = var(εt + ...+ ε1) = tσ2 (4)

cov(yt, yt−j) = (t − j)σ2 (5)

I We can also find the ACF:

ρj =

[
(t − j)

t

]0.5

(6)



Random Walk

I Hence, the random walk model is clearly non-stationary.

I Moreover, its ACF has a very specific behaviour.

I The initial lags autocorrelation is close to one and then it decays
very slowly.

I Thus, it is not possible to use the autocorrelation function to
distinguish between a unit root process and a stationary process
with an autoregressive coefficient that is close to unity.



The Random Walk Plus Drift Model

I Now lets add a drift to the canonical model

yt = yt−1 + a0 + εt (7)

I Given an initial condition y0 we get:

yt = y0 + a0t +

t∑
i=1

εi (8)

I yt is governed by two non-stationary components: a
deterministic trend a0t and a stochastic trend

∑t
i=1 εi.

I Again, if we take the first difference, we get a series that is
stationary (check!)



General Trend Model

yt = y0 + a0t +

t∑
i=1

εi + A(L)ηt (9)

yt = Deterministic Trend + Stochastic Trend + Stationary

I This is a very general model of non-stationary time series.

I We can make use of this model to identify if the source of
non-stationarity comes from trend



Which Trend model?

Figure: Various Trend Models



How to make a non-stationary series stationary?

I It depends on what is the source of non-stationarity.

I In the previous case (9), it is both a deterministic trend and
stochastic trend.

I However, there are other sources of non-stationarity such as:

1. Seasonality

2. Structural Breaks

I We will deal with the latter two later. Now lets get back to trends.



How to remove Trend?

I There are two ways to make a trend series stationary.

1. Differencing

2. Detrending

I One needs to check which method is appropriate depending on
the type of type of trend model that is describing the series.



How to remove Trend?

I Suppose the model have a stationary component:

yt = y0 + a1t + εt

I The first difference in this case is not well-behaved:

∆yt = a1 + εt − εt−1

I ∆yt is not invertible because of the unit coefficient in εt−1

I In this case we have to detrend. If we run a regression
yt = y0 + a1t + εt, we can subtract the OLS predicted ŷt from yt

to recover a stationary series ε̂t



How to remove Trend?

I If the model has a unit root (also called unit root model)⇒We
should difference DS.

I If the model is trend stationary⇒We should detrend TS.

Example: Below we conclude that REAL GNP is DS

Figure: Trend VS Detrend



How to remove Trend?
I Lets look graphically. GNP does not seem to be trend stationary:

Jan
1947

Jan
1955

Jan
1965

Jan
1975

Jan
1985

Jan
1995

Jan
2005

Jan
2015

7.
5

8.
0

8.
5

9.
0

9.
5

log(GNP)

Figure: log of GNP plot



How to remove Trend?
I Indeed the detrended series look far from stationary:
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Figure: log of GNP plot



How to remove Trend?
I However the first difference look “fairly” stationary:
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Figure: log of GNP plot



Dickey-Fuller Tests for Stationarity

I It is hard to simply use plots or ACF to determine if a series is
stationary or not. Two different statisticians might reach different
conclusions looking at the previous plot.

I Dickey and Fuller developed the following tests:

∆yt = γyt−1 + εt (10)

∆yt = a0 + γyt−1 + εt (11)

∆yt = a0 + γyt−1 + a2t + εt (12)

I The test involves in testing γ = 0.

1. The first equation tests for a stochastic trend.

2. The second tests for a stochastic trend plus deterministic trend

3. The third one tests for stationary trend model.



Dickey-Fuller Tests for Stationarity

I However, we cannot use classical inference on γ because the
series with γ = 0 are non-stationary and hence sample statistics
are not ergodic.

I Dickey and Fuller then used Monte Carlo methods to simulate
the distribution of γ in such cases so that we can use it to test for
γ = 0

I An additional challenge is that the distribution changes with the
specific parametric form. Hence all (10), (11), (12) will yield
different critical values.

Moreover, we assume that εt is stationary!



Dickey-Fuller Tests for Stationarity

I To deal with that, the Dickey-Fuller test can be augmented
forming the ADF test:

∆yt = γyt−1 +

p∑
i=2

βi∆yt−i+1 + εt (13)

∆yt = a0 + γyt−1 +

p∑
i=2

βi∆yt−i+1 + εt (14)

∆yt = a0 + γyt−1 + a2t +

p∑
i=2

βi∆yt−i+1 + εt (15)

I The advantage is that with the appropriate lag p, εt will be
stationary.



Dickey-Fuller Tests for Stationarity

I Lag-selection procedure:

1. Begin with large enough lag p

2. If βp is insignificant using a t-statistic, we remove it and redo it
with lag p− 1

3. Repeat until the last lag is significant.

I It can be shown that such procedure will select the true model if
the first chosen lag p includes the true model

I Moreover, although t-statistics are not valid for γ they are valid
for β



Dickey-Fuller Tests for Stationarity

I Example: back to the GNP example.

Figure: ADF using the adf.test in R - This function always detrend (It
gives the test more power). So we cannot know apriori if the series is
stationary or trend stationary. In this case, given that the difference is
stationary we know it is a DS process



Dickey-Fuller Tests for Stationarity

I One concern with the ADF is the lack of power in its test.

I It is very hard to distinguish between a stationary process with a
root that is very close to unity and a unit-root process.

I Some methods were developed to improve the power of the test.
Elliott, Rothenberg, and Stock (ERS, 1996) suggest that we first
estimate the trend components, detrend the series and then apply
the ADF.

I This is what the adf.test does in R.



Seasonality

I Sometimes, just taking differences or detrending is not enough to
ensure stationarity.

I If there is a strong seasonal component, then our series will not
be stationary after doing the usual data transformations.

I In this case, visual inspection of the series can help together with
its ACF.

I One way to formaliy test for seasonality is to use the HEGY test
(Hylleberg, S., Engle, R., Granger, C. and Yoo, B. (1990))



Structural Change
I Another reason why some series are non-stationary is the

existence of structural breaks in the series.
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Figure: U.S. CPI



Structural Change
I Another example: US Dollar / Yen. Plaza Accord in 1985
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Structural Change
I When there are structural breaks, the various Dickey-Fuller test

statistics are biased toward the nonrejection of a unit root.

I Perron (1989) showed that the ADF is indeed biased in the
presence of structural breaks



Structural Change

I When it is obvious in the series, one can split the sample and use
the ADF test in each sub-sample series.

I However, we will loose degrees of freedom.

I Perron proposed a single test using the full sample.



Hodrick-Prescott (HP) Filter

I The HP (1997) filter is a very useful decomposition of a series
into a trend and stationary component.

I The objective is to decompose yt into a trend µt plus a stationary
yt − µt. Consider the sum of squares:

1
T

T∑
t=1

(yt − µt)
2 +

λ

T

T−1∑
t=2

[(µt+1 − µt)− (µt − µt−1)]2 (16)

where λ is a constant and T is number of observations.



Hodrick-Prescott (HP) Filter

I The idea is to, given λ choose µt to minimize (16).

I If λ→ 0, µt = yt, and if λ→∞, µt = a0t, just a linear trend.

I The HP filter is vastly applied in the Business Cycle literature

I Typically, these are the values of λ used:

Monthly data λ = 129, 600
Quarterly data λ = 1, 600
Annual data λ = 6.25



Hodrick-Prescott (HP) Filter
I Example of the HP filter to the Portuguese GDP:
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Figure: U.S. CPI



Summary

I Series can contain trends with stochastic and deterministic
components

I Differencing can remove a stochastic trend, and detrending can
eliminate a deterministic trend.

I However, it is inappropriate to difference a trend-stationary
series and to detrend a series containing a stochastic trend.

I We can use the ADF test for stationarity

I Most macroeconomic series contain a stochastic trend. Often
time they are I(1) and sometimes I(2)

I In this case it is hard to estimate the stochastic trend. HP filter
provides one way to do it.



Questions to think about

I What is a stochastic trend?

I Under what circumstances should we detrend or difference a
series?

I Why can’t the ADF use standard tests to test for stationarity?

I What are some of the sources for non-stationarity other than
trends?

I Why is the HP filter useful for macroeconomics data?
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