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Lecture Objectives:

I Spurious regression

I Introduce the concept of cointegration

I Show that when a set of variables are cointegrated we can
analyse short-run and long-term dynamics: we can have a
long-run representation and error correction form.

I Introduce VECM

I Describe two tests for cointegration: the Engle-Granger test and
the Johansen test.



Secondary Readings:

I Chapter 6, Applied Econometric Time Series, Enders, Walter,
Fourth Edition

I Chapters 19 and 20, Time Series Analysis, Hamilton, James, first
edition



Spurious Regression

I As we know by now, if some or all variables are non-stationary
in a regression, the usual classical statistical results are usually
no longer valid (unless they are cointegreated).

I One particular instance of such a case is called Spurious
Regression.

I This case is worrisome as using classical statistics in this case
suggest relation in variables that in reality do not exist!



Spurious Regression

I Granger and Newbold (1974) called the attention of the
profession with a canonical example of such case. Suppose two
series are by construction are I(1) and independent of each other:

yt = yt−1 + εyt

zt = zt−1 + εzt

If we regress yt on zt it turns out we find:

yt = 6.74 + 0.40zt, R2 = 0.21

(0.39) (0.05)

I Hence, using the usual t-test that these variables are linearly
related.



Spurious Regression

I We expect the coefficient to be zero. And indeed if we do a
regression for the stationary first difference of the series we find:

∆yt = −0.06 + 0.03∆zt, R2 = 0.00

(0.07) (0.06)

I Hence, it gives the expected results.

I In the case of a spurious regression, the OLS estimate is not
consistent and the variance goes to infinity as the sample size
increases.

I Regression with non-stationary data only is valid when the series
are cointegrated.



Intro to Cointegration

I Consider a case where a set of economic variables are in a
long-run equilibrium:

β1x1t + β2x2t + ...+ βnxnt = 0 (1)

I Let xt represent the vector of variables and β the vector
representing the coefficients in (1). We can define deviations
from this equilibrium by et"

et = βxt (2)

I For (1) to make sense as an equilibrium, et must necessarily be
stationary.



Intro to Cointegration

I A set of non-stationary variables with the same order of
integration say I(d) are said to be cointegreated when a linear
combination of them exists , (β 6= 0), and is stationary.

I Most of the cointegration literature focus on cases where
variables are I(1). The reason being that most economic
variables are I(1).

I There can be multicointegration. Example: it is possible that a
subset of variables is I(2) but that a linear combination of them is
I(1). Hence, we can use this linear combination together with the
other variables that are I(1) and have cointegration.

I The cointegration vector β is unique up to scalar. We need to use
a normalization.



Normalization

I If β represents a cointegration vector, so does:

cβxt = β∗xt ∼ I(0)

I Where c is a constant. We need some normalization. A typical
normalization used is

β = (1,−β2, ...,−βn)

I So that

βxt = x1t − β2x2t − ...− βnxnt ∼ I(0) (3)

or

x1t = β2x2t + ...+ βnxnt + εt (4)



Multiple Cointegration Vectors

I Moreover, we know from linear algebra that there can be at most
n− 1 linear independent vectors that span the entire linear
cointegration space.

I Example: If there there are 3 variables, n = 3 there can be at
most r = 2 linear independent cointegrating vectors.

I These linear independent vectors are the basis for the space of
cointegrating vectors

I If we have 3 linearly independent cointegrating vectors, then we
have recovered the entire space and any linear combination of
the variables is stationary which can only occur if and only if all
variables are stationary (hence they cannot be I(1) in the first
place).



Common Trend Interpretation

I Cointegrated series share a common stochastic trend. To see
why, lets see an example with two non-stationary variables that
are decomposed into their stochastic trend (random walk) plus a
stationary irregular component:

yt = µyt + eyt (5)

zt = µzt + ezt (6)

And the linear combination of them is:

β1yt + β2zt = β1(µyt + eyt) + β2(µzt + ezt)

= (β1µyt + β2µzt) + (β1eyt + β2ezt)



Common Trend Interpretation

I Given that et are both stationary, for yt and zt to be cointegrated it
must be the case that

(β1µyt + β2µzt) = 0 (7)

Hence,

µyt = −β2

β1
µzt (8)

I That is, for cointegration to exist between yt and zt, their
stochastic trend must be identical up to a scalar.

I The essential insight of Stock and Watson (1988) is that the
parameters of the cointegrating vector must be such that they
purge the trend from the linear combination.



Example of Cointegration
I Income and consumption share a common trend:
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Error Correction Model

I Its clear that for both to be in a long-run equilibrium, one of
them or both need to adjust to movements of the other.

I That is, if consumption rises, either GDP has to rise next period,
or consumption needs to fall next period or both or even GDP
would have to rise by more than consumption next period.

I Hence, for a cointegreation to exist, a dynamic adjustment must
also exist. Such dynamic adjustment is called the error
correction representation.

I Granger representation theorem: For any set of I(1) variables,
error correction and cointegration are equivalent representations.



Error Correction Model

I Lets start with a 2 variable example of consumption and income
and then we extend our analysis to a n variable case.

I Note that with two variables there can be at most r = 1
cointegration vector. Consumption and income have the
following long-run equilibrium and cointegration vector (1,−β):

yt = βct + εt (9)

We know they must adjust and one error-correction model is:

∆yt = −αy(yt−1 − βct−1) + εyt (10)

∆ct = αc(yt−1 − βct−1) + εct (11)



Error Correction Model

I In this case, if the income is above the long-run equilibrium
level, then income would fall next period because of −αy and
consumption would increase, αc.

I These forces help reestablish equilibrium. How fast? αy, αc

determine the speed of adjustment.

I Note that the name error-correction comes form the fact that
yt−1 − βct−1 = εt−1. Hence the variables in difference react to
deviations of the long-run equilibrium.

I Also, note that both (10) and (11) are I(0). Since yt and ct are
both I(1), their first difference is stationary. Moreover, because
of cointegration , yt−1 − βct−1 = εt−1 is also stationary.

I We conclude that (10) and (11) can only exist if and only if there
exists cointegration (9).



Error Correction Model

I Without loss of generality we can add lagged terms to (10) and
(11) and we can generalize for n variables:

∆xt = πxt−1 +

p−1∑
i=1

πi∆xt−i + εt (12)

I Where π is the matrix with the cointegrating vectors. In our
previous example we had the same cointegrating vectors, and so
the rank of π was 1.

I Take a moment to look carefully at (12). Its looks very similar to
a VAR in differences but now with an additional term πxt−1. (12)
is in fact the Vector Error-Correction Model (VECM).



VECM

I Lets start with a VAR(p):

xt = A1xt−1 + ...+ Apxt−p + εt (13)

I Adding and Subtracting Apxt−p+1 on both sides we have:

xt = A1xt−1+...+Ap−2xt−p+2+(Ap−1+Ap)xt−p+1−Ap∆xt−p+1+εt

I Now Add and Subtract (Ap−1 + Ap)xt−p+2:

xt = A1xt−1+...+Ap−2xt−p+2−(Ap−1+Ap)∆xt−p+2−Ap∆xt−p+1+εt

...



VECM
I Continue until:

xt = π∗xt−1 +

p−1∑
i=1

πi∆xt−i + εt

I Finally subtract xt−1 on both sides and we have a VECM:

∆xt = πxt−1 +

p−1∑
i=1

πi∆xt−i + εt (14)

I Where π = −(I −
∑p

i=1 Ai). Again, a VECM representation
only makes sense if the rank of π, is greater than zero and less
than n, e.g. (0 < r < n). If it is zero, it means all elements of pi
are zero and there is no cointegrating vector so that we just have
a VAR in differences. If the rank is n, then all variables are
stationary and cannot be cointegrated.



Testing for Cointegration

I There are two main ways to test for cointegration:

1. The Engle-Granger methodology. It seeks to determine if the
residuals of the long-term equilibrium are stationary.

2. The Johansen methodology. It uses the VECM form and tests the
rank of π



Engle-Granger Test for Cointegration - 4 steps

1. Pretest the variables for their order of integration.

I By definition, cointegration requires that the variables are
integrated of the same order.

I Hence, first we need to test for the order of integration of each
variable.

I We can use the ADF test to infer the number of roots in each
series.

I If all are stationary we can stop here and use the standard
stationary analysis we saw so far. If they are of different order,
they are probably not cointegrated. We just need to double check
for multicointegration.



Engle-Granger Test for Cointegration - 4 steps

2. Estimate the long-term relationship.

I After we confirm in step 1 that both variables are I(1), then we
estimate the long-term equilibrum equation:

yt = βct + εt (15)

I In case of cointegreation, OLS can be used as the estimates of β
are super-consistent. However, beware they do not have standard
distributions and the usual t-tests do not apply. Hence, just use
estimates. Do not use it to test β.

I Then we use the ADF test (critical values are different because β
is estimated) on the residuals ε̂t and check if they are stationary.
If they are stationary, then there is cointegration. If not, probably
spurious regression.



Engle-Granger Test for Cointegration - 4 steps
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Engle-Granger Test for Cointegration - 4 steps
3. Estimate the error-correction model.

∆yt = −αy(yt−1 − βct−1) + εyt (16)

∆ct = αc(yt−1 − βct−1) + εct (17)

I They propose a way to estimate them by replacing the residual of
(15) in (16) and (17) because ε̂t = yt − β̂ct

∆yt = −αy(ε̂t−1) + εyt (18)

∆ct = αc(ε̂t−1) + εct (19)

I Hence, we can estimate (18) and (19) with OLS and use the
usual t-tests as all of the variable are stationary. From this we get
estimates of the speed of convergence α̂y, α̂c



Engle-Granger Test for Cointegration - 4 steps

4. Model checking and reports.

I Check if the residuals in (18) and (19) are I(0). IF they are not,
then there might be a mispecification in the number of lags. That
is, we might need to estimate:

∆yt = −αy(ε̂t−1) + a11∆yt−1 + a12∆ct−1 + εyt (20)

∆ct = αc(ε̂t−1) + a21∆yt−1 + a22∆ct−1 + εct (21)

I Test the speed of adjustment. Suppose αy is not significant. In
this case, all the adjustment to equilibrium comes from
consumption.

I Finally, we can use the usual error decomposition (Choleski) to
get the impulse responses coming from the VECM.



Engle-Granger Test for Cointegration - Limitations

I Which variable goes in the left-hand side makes a difference in
small samples.

I There is no way to test for multiple cointegrating vectors with
three variables or more.

I It relies in a two-step procedure. Uncertainty in step 1 is carried
over to step two. (e.g. uncertainty in the parameters of the
long-run regression carry over can compound with the short-run
parameters uncertainty)



Johansen Test for Cointegration

I This tests used the general VECM form and tests the rank of π.

I Its main idea is to explore how the eigenvalues of π are related to
the rank of π.

∆xt = πxt−1 +

p−1∑
i=1

πi∆xt−i + εt (22)

I The number of independent cointegrating vectors of π can be
checked by the number of significant eigenvalues.



Johansen Test for Cointegration

I Because if there n linear independent cointegrating vectors, the
determinant |π| 6= 0

I Moreover, since the determinant of a matrix is equal to the
product of the eigenvalues

∏n
i=1 λi, we know that for the

determinant to be non-zero, the eigeinvalues must all be non-zero
as well.

I Hence, the rank of π is equal to the number of its characteristic
roots that differ from zero.

I The Johansen methodology allows you to determine the number
of roots that are statistically different from zero.



Johansen Test for Cointegration

I In practice, we need to estimate π and λi. We will not go deep
into this estimation process. It suffices to say that OLS is not
appropriate for this purpose.

I Two statistics allow you to test for cointegration:

λtrace(r) = −T
n∑

i=r+1

ln (1− λ̂i) (23)

λmax(r + 1) = −T ln (1− λ̂r+1) (24)

I The first one is based on the idea that if there are r linear
independent vectors, then the rest n− r eigenvalues should be all
zero.

I The second statistics only uses the next one and checks if it is
close to zero.



Johansen Test for Cointegration

I Formally, the first statistics λtrace tests:

H0: the number of distinct cointegrating vectors is ≤ r
H1: > r

I The further the estimated characteristic roots are from zero, the
higher is the statistic (23) and we more likely to reject the null
hypothesis.

I The second statistic λmax tests:

H0: the number of cointegrating vectors is r
H1: r + 1 cointegrating vectors

I Again the closer to zero the eigenvalue is the larger is the statistic
and the more likely we are of rejecting the null.



Johansen Test for Cointegration

I Formally, the first statistics λtrace tests:

H0: the number of distinct cointegrating vectors is ≤ r
H1: > r

I The further the estimated characteristic roots are from zero, the
higher is the statistic (23) and we more likely to reject the null
hypothesis.

I The second statistic λmax tests:

H0: the number of cointegrating vectors is r
H1: r + 1 cointegrating vectors

I Again the closer to zero the eigenvalue is the larger is the statistic
and the more likely we are of rejecting the null.



Johansen Test for Cointegration - Procedure

1. Select the VAR lag using the undifferenced data.

2. Estimate the model and determine the rank of π.

3. If there is more then one cointegrating vector, we may need to
check for possible ways to impose restrictions. If we find only
one vector, we can move to step 3.

4. Analyze the speed of adjustment and the normalized
cointegrating vector.

5. IRF and FEVD.



Should we Difference the data?
I This question is open for debate. Some authors argue against it

like Sims and other for it.

I The reason is that there are advantages and disadvantages in both
cases.

I The advantages of Not differencing are the following:
1. There can be cointegrating relationships. In this case, the

estimates are in fact superconsistent, and estimating a model in
differences is clearly mispecified.

2. Even if there is no cointegration, the parameters are in generally
still consistent. However, the tests have non-standard
distributions.

3. From a Baysian perspective, there is no issue with unit-roots for
inference.

I Start in levels and if the results are the same with the VAR in
differences, then the results are stronger since they do not depend
on unit root assumptions.



Summary

I Many macro variables are non-stationary processes I(1).

I However, there are important equilibrium conditions that connect
the stochastic trends of these processes together.

I We can test for cointegration using the Engle-Granger method or
the Johansen method.

I The Johansen method is particularly useful for more than 2
variables systems.

I We should start with a VAR in levels and if we find
non-sationary series, we should try to find cointegration. If not,
we can see how the results look like for a VAR in differences.

I If they are consistent, the results do not depend on unit root
assumptions.



Questions to think about

I Is cointegration necessarily an economic equilibrium?

I How is the significance of the speed of adjustment coefficients
related to Granger Causality?

I Furthermore, are they related to IRF and FEVD?

I When should we difference the data?

I Can we use standard tests for the cointegrating coefficients β in
the long-run equation?
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