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Lecture Objectives:

I Introduction to Bayesian analyzes.

I Bayesian vs. Frequentist perspective.

I Credible intervals vs. confidence intervals.

I Introduction to BVAR and its commonly used prior distributions.

I BVAR estimation and properties.

I Sign restrictions identification.
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Secondary Readings:

I Chapter 9, Canova, Fabio

I Chapter 12, Time Series Analysis, Hamilton, James, first edition
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Preliminaries

Let A and B be two events.

A B

H

A ∩ B

I Conditional Probability: P(A|B) = P(A∩B)
P(B)
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Preliminaries

Bayes Theorem:

P(A|B) =
P(B|A)P(A)

P(B)

I Proof:

P(B|A) =
P(B ∩ A)

P(A)

P(B ∩ A) = P(B|A)P(A)

However, P(B ∩ A) = P(A ∩ B). Hence, we have:

P(A|B) =
P(B|A)P(A)

P(B)
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Preliminaries

I Frequentists agree with the Bayes theorem and use it.

I Where they differ from Bayesians is in the situations in which
they use it.

I For Bayesians, one can treat A as model parameters and B as
data.

I For Frequentists, that is unacceptable since there cannot be a
probability statement about the model parameters because there
exists a TRUE model.
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Intro to Bayesian Analysis

I AR(1) example:

yt = ρyt−1 + εt

with εt ∼ N(0, σ2)

I If we assume that both the data y and the parameters ρ, σ are
random, then we can treat:

I A = θ = {ρ, σ}
I B = y
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Intro to Bayesian Analysis

I Applying Bayes Theorem gives us:

Likelihood
Prior

p(θ|y) =
p(y|θ) P(θ)

P(y)

Posterior
Marginal data density
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Frequentists vs Bayesians

I Classical, or frequentist view: there is one model, and one tries
to make inference about it, namely, deducing the probability that
the model is true or false

I Bayesian view: there are many models, over which one forms a
prior probability distribution, and uses the data to form a
posterior
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Frequentists vs Bayesians

I Likelihood:

I Frequentist: likelihood is something to be maximised in
knowledge that as data sample increases this maximum (θ̂) would
approach the ONE TRUE THETA.

I Bayesian: this is a distribution function, expressing the data’s
perspective on the probability mass on all possible thetas, with
stance that there is NO SINGLE TRUE THETA.
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Frequentists vs Bayesians
I Frequentist inference makes only pre-sample probability

assertions.

I A 95% confidence interval contains the true parameter value with
probability .95 only before one has seen the data. After the data
has been seen, the probability is zero or one.

I Yet confidence intervals are universally interpreted in practice as
guides to post-sample uncertainty.

I They often are reasonable guides, but only because they often are
close to posterior probability intervals that would emerge from a
Bayesian analysis.

I People want guides to uncertainty as an aid to decision-making.
They want to characterize uncertainty about parameter values,
given the sample that has actually been observed. That it aims to
help with this is the distinguishing characteristic of Bayesian
inference.
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Confidence Intervals vs Credible Sets

I Frequentists: There is a true model but the sample is random. If
we repeat samples and construct confidence intervals, with what
frequency would they include the true model? That is what the
confidence interval gives us.

I Bayesians: Both data and model are random. Given the data we
observe, with what probability would a model be true? This is
the credible set, that can be easily computed from the posterior.
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Bayesian Analysis of Different Models

I Bayesians naturally consider model uncertainty as there is no
true model.

I We just need reinterpret θ as models.

I Example, consider an AR(1) that we will call M1 and an AR(2),
M2:

Model 1: yt = ρ1yt−1 + εt

Model 2: yt = ρ2yt−1 + γρyt−2 + εt

I The parameters in each one are θ1 = {ρ1, σ1} and
θ2 = {ρ2, γ, σ2}

13 / 31



Bayesian Analysis of Different Models
I Now we need priors over the models, and also over the

parameters given a specific model:

p(M) Prior over models

p(θ1|M1) Prior over θ1 given M1

p(θ2|M2) Prior over θ2 given M2

p(M|y) =
p(y|M)p(M)

p(y)

I This gives you the probability that a specific model is true given
the data.

14 / 31



Linear Regression Example With Known Variance

I Take the linear regression example:

y = Xβ + ε

I Assuming normality we have that the OLS estimator:

β̂ ∼ N(β, σ2(XTX)−1)

I That is given β, σ2
ols we have that:

p(β̂|β, σ2
ols) =

1√
2σ2

olsπ
exp

(
−(β̂ − β)2

2σ2
ols

)

15 / 31



Linear Regression Example With Known Variance
I If we have a normal prior over β ∼ N(β0, σ0):

p(β) =
1√

2σ2
0π

exp
(
−(β − β0)2

2σ2
0

)
I We can find the posterior of β using Bayes theorem:

Likelihood
Prior

p(β|β̂) =
p(β̂|β) P(β)

P(β̂)

Posterior
Marginal data density
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Linear Regression Example With Known Variance
I Note that the marginal data density is just a normalization factor

to make sure the probability is well defined (0 ≤ p ≤ 1). Hence,

p(β|β̂) ∝ p(β̂|β)p(β)

I After multiplying the likelihood by the prior we get that the
posterior is given by:

p(β|β̂) ∝ 1√
σ2

olsσ
2
0

σ2
ols+σ2

0

exp

−(β − (w1β̂ + w2β0))2

2 σ2
olsσ

2
0

σ2
ols+σ2

0


Where

w1 =
σ2

0

σ2
ols + σ2

0

w2 =
σ2

ols

σ2
ols + σ2
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Linear Regression Example With Known Variance

I Many important messages come from the posterior:

1. The posterior is itself normal! When the posterior has the same
distribution of the prior we call them conjugate distributions. In
this case, the prior is called a conjugate prior

2. The posterior follows N(w1β̂ + w2β0,
σ2

olsσ
2
0

σ2
ols+σ2

0
). The posterior

mean is then:

βbayes = w1β̂ + w2β0

3. w1 + w2 = 1. Hence we can think of them as weights. The higher
the variance of the OLS relative to the prior, the higher is going to
be the weight given to the prior has we have more confidence in
the prior.

4. As the sample size increases to infinity, the variance of the OLS
estimate goes to zero⇒ w1 → 1.
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Linear Regression Example With Known Variance
I Examples: Here we can see that the variance of the estimate

decreases and the posterior falls somewhere in between the prior
and the OLS estimate.
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Linear Regression Example With Known Variance
I Examples: If we have a more accurate prior notice how the OLS

estimate is not taken into account:
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Pragmatic motivation for estimating Bayesian VARs

I Large dimension to avoid omitted variables

I Curse of dimensionality: parameters increase with n2. Quickly
become ill-determined.

I Forecasting performance poor.

I Possibility of data driving you to misleading local maximum of
the likelihood.

I Prior ’shrinkage’ [shrinkage of probability mass around some
mode, for example] alleviates these difficulties.
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Bayesian VARs

I Bayesian methods can also be applied to VARs. The idea is
again to impose a prior on the parameters.

I As you are probably by now more aware, the key issue is the
choice of a prior.

I Also, a key assumption concerns the variance-covariance matrix.
If it is known, we just need a prior for the reduced form estimates
of the autoregressive components. If is not known, then we also
need to impose a prior on the vcov matrix.
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Estimation of Bayesian VARs Journey

1. Posterior for VAR parameters when we assume the vcov matrix
is known. Use conjugate prior for easier computation of
posterior.

2. Allow vcov itself to have a distribution. Notion of conjugacy in
priors for this that guarantee known distribution for posterior that
we can draw from.

3. Gibbs sampling when conjugacy is not possible or desirable.

4. Metropolis-Hastings, when you can’t factor to leave distributions
from which you can draw.

5. Particle filtering. When one cannot even evaluate the likelihood
for a candidate parameter value.
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Estimation of Bayesian VARs Journey

I In this lecture, we will only present the natural conjugate idea.
Assuming, the prior on the VAR reduced form parameters is
normal, the posterior will also be normal assuming a known
vcov.

I That was the idea behind the first Bayesian VARs. The problem
is that vcov is typically not know. The minnesota prior suggests
ways of replacing the unknown vcov with an estimated one.
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Minnesota Prior

I When Σ is replaced by an estimate, we only have to worry about
a prior for the reduced-form parameters A1. The Minnesota prior
assumes:

A1 ∼ N(AMn
1 ,VMn)

I The Minnesota prior can be thought of as a way of automatically
choosing AMn

1 and VMn n in a manner which is sensible in many
empirical contexts.

I A big advantage of the Minnesota prior is that it leads to simple
posterior inference involving only the Normal distribution.

I The disadvantage is the treatment of σ which is replaced by
some estimate.
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Minnesota Prior

I The prior is over the reduced-form parameters. After estimation,
one can impose the identification assumptions of SVARs.

I It is possible to assume priors directly over the structural
parameters, but we will not discuss it here.

I We will instead use the Bayesian knowledge to discuss the Uhlig
(2005) sign restriction identification strategy.
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Sign Restrictions Identification

I The sign restrictions identification provides an alternative way of
identifying structural shocks when the recursive identification is
not plausible.

I The main idea is to restrict the sign of the impulse response
functions for a number of periods k.

I For instance, a monetary policy shock is identified by restricting
the impulse responses of prices, nonborrowed reserves and the
federal funds rate.

I In particular it is assumed that prices and nonborrowed reserves
both fall, and the federal funds rate rises.
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Sign Restrictions Identification
I The idea is well defined in the Bayesian perspective.

I We have a prior that puts zero mass on some sets of impulse
response functions. The posterior response functions are then the
impulses responses functions that respect the restrictions.

I Here is how it works in practice:

1. Do n1 draws of the posterior of A1 and Σ. The posterior will be a
normal distribution if we use a conjugate prior Normal
inverted-Wishart on (A1,Σ)

2. In each draw, extract the orthogonal innovations from the model
using a Cholesky decomposition. The Cholesky decomposition
here is just a way to orthogonalise shocks rather than an
identification strategy.

3. Do n2 draws of impulse vectors and calculate the implied
responses functions. If they respect restriction, keep them.
Otherwise, discard them.
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Sign-Restriction Uhlig (2005)
I Examples: Agnostic Perspective on the Effect of Monetary

Policy on Output.
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Sign-Restriction Uhlig (2005)

I Examples: Forecast Error Variance Decomposition
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Questions to think about

I What is the difference between confidence and credible
intervals?

I Why Bayesian analysis improve forecasts?

I What is a conjugate prior? And why are they useful?

I How does the sign-restriction identifies structural shocks?

I Why is it hard to formalize the sign-restriction approach in a
frequentist perspective?
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